
CS 142
OOP I
Course Portfolio
[image: image64.png]By IT 4l
Timi 1 denlop et e sting s s semed 0 heclosst e e

Tinjo i comgutice, B 7oL s B ol ey Lt Lonld ey do

Do msted i today tacllgies ki i o rosig i elucloges 4 aer o

T o0 e, comfrble i comptr, e ol T 0k vl good maney. Nor o rwly oy 2

ks comgrnrs nd am good eming out . 16 . ot rogsming ould be & 04 5 e s i i Smahing ot [1e th Tean
w4 good e .

Tans gk

Th e Mo ot chsn a0 th e ot ll the compaie .

Ttock s rogpunig rbiad cou. ¢ N Mt o il Sl Coas i ey ki it csgutse

Linjoyedth pogpamming chss 1ock in kighschool.

S R A AT,
Chingig caees 1o i whmi, et tch, @l e s
300 ppernaties ad sttt

Applicd science
Tehinged v am o compraer progpemmmer. This il aance my e opperomites.

L s i, Comgrte Progpusming bacess 1 s oo b o googpum ke b geogoam € v,
BBy et i ideo ames v e 10 w0 rogpn thm.

Lyrat o bconse & compute it v et 1t o get iy Casgut Sies Bl Dagres

i ATA i LAN Admicom, 0.0ttt 0.V or Ut of Phoatx

W s

e oed il comptrs my vl 1 - 50 bl Lo o e e 1o rogpn the 0 do it vt

Tk A ptograming bted cones 1 Hew b o ol Sl Cete gy ki il Gt
Tonssia

Vcnast

T e o s s e st ol compeie .

Lonjyed e progpmsning ch T nhighscool

By ot A oML . iy 0, AL ey g b A 10 bl 0Vl g e b
Tt e 47 o

i i i D - o e i, 6 s Al i g il s e et L, Sl e i bl o e o
ik of e, i o e oty i s, hopeily oy o b

B T s e 18, i b e y <o v sy - g ' 140 e ettt o Tt Thi iy
i e, Tow o S L5 Sty e S o 1, 4 vt g ey e o ot e oty
S RS e o e A BB of o R i A TR s AT oG 1 AT g, o
Ay 0 R o o 7 Ty, g o et s oo A A 23 st 2 € o ol ofbon Ly
i e i S

Tt b 0 i pys st 5

A e 0 qulicions ok sy ke i Ty b ovalgpig s

R weed e 0d s . T had Wb Deelpmed progins i High Scol s Tt splre the el e

by

Richard A. Hoagland
CS/CIS Professor
June 2006

Preface
What is a course portfolio?

A course portfolio “can help faculty investigate and document what they know and do as teachers in ways that will contribute to more powerful student learning” (Hutchings, P. (1998). The course portfolio: How faculty can examine their teaching to advance practice and improve student learning.)

The purpose of the course portfolio "is in revealing how teaching practice and student performance are connected with each other" (Bernstein, D. (1998). The course portfolio: How faculty can examine their teaching to advance practice and improve student learning.)

The course portfolio is a scholarly investigation into student learning using evidence a teacher gathers about students’ learning. This evidence can be in the form of classroom assessment tools, samples of student work (homework, tests, and labs) and peer review. The end result is not only an analysis of student learning but an introspective and meta-cognitive opportunity to analyze the art of teaching.
UWT Disciplinary Commons project (Tenenberg, 2005)
LINK: http://depts.washington.edu/comgrnd
Project goals

The Disciplinary Commons project has two primary objectives:

· To provide an opportunity for Computer Science faculty at two- and four-year institutions in the South Puget Sound region to work together to understand the educational contexts and constraints, and the qualities of students and their learning, within one another’s courses.

· To improve the quality of Computer Science teaching by establishing practices of collaboration and review of teaching among regional Computer Science faculty.

The Commons will involve a series of monthly seminars involving 10-12 faculty from community colleges and baccalaureate-degree granting institutions in the South Puget Sound region.

Project structure

Each participant in the project will construct a course portfolio for a course that they teach that is on the path for a baccalaureate degree in a Computer Science program.

The course portfolio, well known as a method for advancing teaching practice and improving student learning is a set of documents that “focuses on the unfolding of a single course, from conception to results” (Hutchings, P. (1998). The course portfolio: How faculty can examine their teaching to advance practice and improve student learning.)

Course portfolios typically include learning objectives, course content and structure, a rationale for how this course design meets its objectives, and the course’s role in a larger degree program. Importantly, the portfolio also includes evaluations of student work throughout the term, indicating the extent to which students are meeting course objectives, their feelings about the course and their own learning, and an analysis from both the teacher’s and students’ viewpoint regarding the type and quantity of formative evaluation (corrective feedback) they are receiving.

The Disciplinary Commons is a project funded by the Washington State Board of Community and Technical Colleges and the University of Washington, Tacoma.

The leader for this project and workshop facilitator is Josh Tenenberg, Associate Professor and Undergraduate Coordinator in Computing and Software Systems at the University of Washington, Tacoma's Institute of Technology.

Each participant is provided a one-course release (5 credits) during one academic quarter in exchange for participating in the year long portfolio project. The participant’s school is reimbursed for the cost of hiring an adjunct faculty member to teach the course that the participant is released from.

Benefits of participating
· Professional development – Most faculty creating course portfolios state that the critical reflection involved in portfolio construction results in significant and lasting changes to the course and to their own subsequent teaching.

· Community development - Although a culture of peer review and discourse is common within research communities it is rare among teachers as teaching most often happens in isolation. As we document our own work and review each other's, we overcome insularity and limited breadth of view and are able to identify knowledge and best practices, which can be developed and shared as community resources.

· Documentation of practice - In a course portfolio, participants will have a persistent, peer-reviewed, documented deliverable that can be shared with others both inside of, and external to, their home institution.
Educational Community Benefit

The Disciplinary Commons will act as a repository and archive for course portfolios in computer science at the two- and four-year level and provide a valuable resource for educators. In addition, it will chart the development of “what is” a course portfolio over time.

Summary

A course portfolio is beneficial because:

1. Portfolios provide documented evidence of teaching that is connected to the specifics and contexts of what is being taught.

2. They go beyond exclusive reliance on student ratings because they include a range of evidence from a variety of sources such as syllabi, samples of student work, self-reflections, reports on classroom research, and faculty development efforts.

3. In the process of selecting and organizing their portfolio material, faculty think hard about their teaching, a practice which is likely to lead to improvement in practice.

4. In deciding what should go into a portfolio and how it should be evaluated, institutions necessarily must address the question of what is effective teaching and what standards should drive campus teaching practices.
5. Portfolios are a step toward a more public, professional view of teaching. They reflect teaching as a scholarly activity.
(Edgerton, R., Hutchings, P., & Quinlan, K. (1991). The teaching portfolio: Capturing the scholarship in teaching.)

References / Resources

The Course Portfolio – How Faculty Can Examine Their Teaching to Advance Practice and Improve Student Learning by Pat Hutchings, 1998, Stylus, LLC

ISBN 1-56377-043-1

Making Teaching Community Property – A Menu for Peer Collaboration and Peer Review by Pat Hutchings, 1996, AAHE (no ISBN)

Classroom Assessment Techniques – A Handbook for College Teachers 2nd edition by Thomas A. Angelo and K. Patricia Cross, 1993, published by Jossey-Bass (Wiley Company), ISBN 1-55542-500-3

William Cerbin, The Course Portfolio, APS Observer, 14(4), 2001.

http://www.psychologicalscience.org/observer/0401/tips.html
Lee Shulman, “Course Anatomy”, in The Course Portfolio, Pat Hutchings (ed.), AAHE, 1998
http://frontpage.uwsuper.edu/scholars/SchulCA.pdf
Indiana University’s Course Portfolio Initiative,

http://www.indiana.edu/~deanfac/portfolio/
Peer Review of Teaching Project, University of Nebraska, Lincoln
http://www.unl.edu/peerrev/
Creating a Disciplinary Commons in Computing Education (University of Kent at Canterbury, UK) http://www.cs.kent.ac.uk/people/staff/saf/dc/
Table of Contents
· Why this course? (page 6)

· My personal goals (page 7)

· My objectives (pages 8-11)

· Course portfolio (pages 12-44)
· How the course fits into degree program(s)?

· Who are our students?

· What constraints do we operate under?

· Course content

· Teaching methods

· Philosophy of teaching

· Evidence of student learning

· Assessment
· Student consent form (human research)

· Summary
· Appendix (pages 45-72)
#1
UWT Disciplinary Commons project/Session Overview web page

#2
Center for Instructional Development and Research Bulletin/Classroom
Observation Notes (Vol.1, no. 4, 1998)

#3
SPSCC Computer Programming

Application-Desktop Track ATA

Applied Science: UW, Tacoma Track AAS-T

Web Track ATA
#4
SPSCC Associate of Science – Option Two

#5
Student Perception Survey for CIS
#6
Interest in CS as a Major Drops Among Incoming Freshmen” by Jay Vegso

(http://www.cra.org/CRN/articles/may05/vegso)

#7
Computing Curricula 2001: Guidelines for Associate-Degree Curricula in
Computer Science [PL6, Object-oriented programming (core)]

http://www.acmtyc.org
#8
Handout
#9
Hands-on Lab sheet
#10
Hands-on Lab exercise code

#11
Hands-on Lab learning outcomes

#12
Demo program

#13 Classroom Assessment Techniques (Minute Paper)

#14 CAT (Muddy Point)

#15
CAT (Pace)

#16 CAT (A Content, Form, and Function Outline)

#17 The Good, The Bad and The Ugly (Practice, Assignment 1 & 2)

#18 Grading sheet

#19 Homework learning outcomes

#20 Graded work: Practice (‘B’) Assignment 1 (‘B’) Assignment 2 (‘A’)
Why this course?

I chose the Computer Science course CS 142, “Object Oriented Programming I”, for several reasons.

First, this course was developed by me as part of a UWT-CTC Fellowship Program with the Institute of Technology at the University of Washington, Tacoma in 2004. The purpose of the Fellowship was to create a “transferable” course for our students seeking to pursue a baccalaureate degree in Computer Science at UWT after completing their two-year A.S. (Associate of Science) transfer degree.

Second, this course has become our department’s introductory course to object-oriented programming (OOP). It is a required course for the A.T.A (Associate of Technical Arts) in Programming and for the A.S. transfer students. This course is relatively new to our program (replacing the C/C++ language with Java) and is still in the process of revision. The Association for Computing Machinery (ACM) provides a national guideline for course objectives; however, there is within the educational community a lot of debate on the programming language, pedagogy, tools and approaches that are the most effective for this course.

Lastly, the majority of the commons’ participants have chosen this course for their portfolios. This affords the best avenue therefore to collaborate with my fellow professors.

The participants and their affiliations:

· Josh Tenenberg, UW Tacoma

· Janet Ash, Green River CC

· Donald Chinn, UW Tacoma

· Ravi Gandham, Bellevue CC

· Michael Gelotte, Bellevue CC

· Laurie Murphy, Pacific Lutheran University

· Brad Richards, University of Puget Sound

· John Staneff, Pierce CC (Fort Steilacoom)

· Phyllis Topham, Shoreline CC

· Jeffrey Weiss, Pierce CC (Puyallup)

My personal goals

My primary goals for the portfolio are to document my teaching process and to encourage myself to pay closer attention to what and how well my students learn.

Unfortunately, it is too often the case in the computer science discipline that the “preparation to teach” is all consuming! In other words, keeping up with the pace of change (in software, languages, textbooks, etc.) within the computer field is such a daunting task that often all else falls by the wayside. It is critical to step back once in a while and examine “how to be a better teacher”.

This self-reflection on teaching makes me examine closely what happens in the classroom for any given teaching session.
· What were my goals for this teaching session?

· How was I trying to achieve them? What instructional strategies did I use?

· How did I try to assess student understanding of this content? How satisfied am I with their progress?

· What did I see my students doing during class? Were they attentive, interacting, taking notes, etc.?

· What key areas could be targeted for improvement?

· What can I do to improve the teaching of this content/class?

This self-reflection can lead to adopting new teaching methodologies like the Socratic method, Direct Teaching (also known as Direct Instruction) and/or utilizing Classroom Assessment Techniques (CATs) such as Minute papers, Muddiest Point, Pace, and A Content, Form, and Function Outline feedback forms.

A secondary goal is to have a chance to interact with fellow professors at different institutions in my field.

This peer review of teaching can provide many benefits:

· It helps to ensure quality in teaching.

· The process is collegial and supportive, and should lead to improved teaching practices.

· It facilitates the dissemination and sharing of expertise concerning teaching and learning within the discipline.

· It increases opportunities for scholarly and collegial discussion about teaching.

I find the idea of introspective learning, emphasis on teaching and learning quality, and peer support to be of utmost importance.

My objectives

The course portfolio will provide me an opportunity to benefit from:

· Overall curriculum evaluation

· An exploration of teaching

· Analysis of student outcomes

· Peer review of how the course is taught

The evaluation of where and how my course fits into our overall curriculum has been an eye opener. It has helped me to see that many of my perceived failures in helping students succeed in the class are outside of my control and reflect an important need in our department to re-evaluate our curriculum. Issues like prerequisites, course flow, student preparation, and retention support all play a role in the success that a teacher has in the classroom.

The monthly workshops I have attended as part of this Project have been very enriching. The topics and supporting materials provided have been excellent. The ability to discuss the materials with my fellow participants has been invaluable. See Appendix #1 for Sessions Overview web page.

The exploration of teaching has been one of the more rewarding aspects of this Project. I have had a chance to validate with my peers the value of changes that I had already started to incorporate into the classroom like Curriculum Assessment Tools (CATs) and listing learning outcomes per assignment and lab exercise. In addition, I added new ideas like homework feedback (“TheGoodTheBadAndTheUgly”) after discussions at our group meetings.

This Project has really challenged me to analyze student outcomes in a more profound way. I had a feeling that the students were learning what I expected them to, but did not have actual “data” to necessarily support that. I still find it difficult to show the connection between the course objectives and student outcomes (even harder for those course objectives that are not explicitly stated but are implicit within my philosophy of teaching).

A peer review was conducted by a fellow Portfolio Commons participant using the classroom observation form developed by the Center for Instructional Development and Research (CIDR). See Appendix #2 for the bulletin and observation notes form.

I found this peer review to be more valuable than previous reviews I have undergone. The major difference was that the other reviews were part of my initial tenure process or part of my continuing post-tenure evaluation and therefore had a more “threatening” feel to them—that I was being observed not for the sake of my becoming a better teacher but to judge me.

Instead, I viewed it as an opportunity to get some valuable feedback to help me be the best I can possibly be. The observation form used (from CIDR) was much more interactive and inclusive than the one currently in use at my institution. Here’s a review done by another Commons participant:
	Classroom Observation Notes

Pre-Observation Notes:

Instructor: _____Richard Hoagland__________________________________

Observer: ______John Staneff__________________________________

Time and Place: 22-Feb-2006
for the observation: _____SPSCC Bldg. 34 Room 107 at 10:00am______________

for the pre-meeting to discuss the observation: ____ SPSCC Bldg. 34 Room 123 at 9:30am ____

	Classroom environment:

· Each student has own workstation (approx 28 such in room).

· About 10 students in class, maybe 4 female.

· Overhead projector to a corner with full access to wide whiteboard. Projected image plainly visible in normal lights-on environment.

	Instructor's goals for the class being observed:

· Introduce new topic “inner classes”

· Review “top-level” class & multiple class definitions in one file

· Demonstrate an example of top-level class (multiple class definitions), inner class (non-static), nested class (static inner class), and anonymous class

· Pass out CAT (minute paper)

	The instructor asks the observer to pay special attention to:

· Clarity of lecture (did I successfully explain the topic to the students)

Lecture was fairly crisp; topic was interesting to the students. There were suggestions and hints that could lead some students to do more research and other students to be frustrated that something was not covered.

· Examples & resources helpful to the students

Students were eager to get the handout and to locate what was on the shared drive.

	Observation Notes:

	time

 10:00am

thru

 10:50am

	observations

Some observations time independent

2nd observing instructor well known to students, some early distracting conversation.

A pair of “girls” would fill in the empty space whenever Richard didn’t talk … that fell away after about 20 minutes … There were several conversations at the start of class. Richard gained control without raising his voice.

About 10 students.

Housekeeping session up front, CAT at end, pie in the middle! (An Igloo is crunchy on the outside, chewy in the middle …. ;-)

10:12 Checkpoint: “How are we doing?”

Richard asked a question at one point and waited about 20 seconds without getting student response. Why? Students appear to be bright. Are they shy (no), is the material not getting through? Good place for the CAT to help Richard see what was going on.

Used the screen to review “supplied” Java code that is available on the shared drive. Some students toward the back also had these programs displayed on their monitors, in order to see.

A student asked about setting up classes for playing cards in a Black Jack game and was told that was a question / subject for the CIS 285 (data structures) class. Friendly, but firm.

Covered the “why” of an anonymous class.

10:36, after talking about wishing he had 2 screens, Richard finally brought up two files in 2 separate windows to show a side-by-side comparison.

Handouts were immediately grabbed by students and read/examined.

Richard spent some time explaining the naming conventions for the contents of the classes directory, showing how inner classes appear in file names.

	impressions / questions to ask

Impressions time independent

Comfortable relationship between instructor and students. Most students seem serious about the subject, but with a good sense of humor and an excitement to be in the class.

Good arrangement of classroom with projector screen tucked into corner allowing both the board and screen to be used concurrently; projector bulb both bright enough and in focus.

Big monitors on tables makes the lower part of the board unusable for anyone beyond the first row. Maybe the lower 1 ft of the board is sacrificed.

Class progress is excellent. Already covered abstract classes and interfaces, now looking toward inner classes, and making distinctions among different kinds. Also has covered the concept of a “final class”.

Some of the handwriting is “smallish” from the back of the room, but still clear. Students without proper eyesight (or corrective lenses) will have a problem with that.

Student coming in late (10:37) disrupted the class, and the general train of thought.

Time frame seems rushed to me, but I’m used to a 2hr 10 min format for this class. Considering housekeeping and CAT, the effective time is about 40-45 minutes.

Supplies, handouts, were kept in the in-class cabinet. That cabinet is located in the front and when open, its contents are on display to all. But pulling handouts from the cabinet seems a good way to reduce carrying things around.

At one point a handout was printed in the room. Richard requested no one else use the printer while he printed the pages. This seemed a “normal” thing that the class might expect from time to time.

Richard complained to the class that J-Builder was too slow, so “we’ll use notepad”.

	Immediate Post-Observation Questions

General Questions:

· Was this a typical class?

Yes, they were a little more quiet than usual.
· What was your impression of how it went?

OK. I realized as I got into the lecture that there was a lot of related topics that also needed to be covered—time is always an issue. This lecture will require a follow-up for those items left fuzzy. The CAT will help me pin those down.
· What's your impression of how well you achieved your goals for the class?

For those items I was able to address directly, I felt successfully in explaining the topics. Secondary goals (the related topics) I am less sure.
Specific Questions (based on observation notes):

· Do you feel that this class is on-target with respect to the syllabus and course requirements ?

· Do students ever complain about the projected image when the lights are on (too dim, etc.)?

· How much time do you spend restocking the cabinet? Is this easy/difficult? Do you share the classroom, thus have only certain times you can get at the cabinet? It would also seem to force a certain amount of advance preparation to meet a “schedule” when you can access the cabinet.

· Looking at this as a CS-1 course, how does the course content fit with ACM’s CS-1 and UW/T’s perception? (E.g., is this on-target, or ahead? My impression is that it is ahead.) One way to look at this question is “What are the prerequisites and were they met by all students?)

	Comments:

Richard enjoys his teaching and his students like to be in his class. The 2nd observer was well received, and left ½ way through. The material being covered seems well-managed, the students are making good progress through it. It was a pleasure to watch Richard teach, and to observe how his quiet voice commanded attention. The minor disruptions were short and well handled. (Now, if Richard could only keep track of his keys … ;-)

Reading over Richard’s teaching philosophy, he seems to be on-target for what he expects to do in the classroom ;-)

Observed faculty response to observer follow-up questions:
· Overall, I do feel that the class is on-target with respect to the syllabus and learning outcomes.

· I can only recall one student in the last year complaining about the brightness of the overhead screen (w/ lights on).

· The storing of course materials (i.e., handouts, lab, assignment sheets, etc.) has saved me the strain of carrying things from my office. It does require that I be well-organized and I have to periodically restock. I teach all my classes in that room.

The course covers more OO concepts but less GUI than the CS1 course at UWT. The best scenario is for a student to take both CS142 and CS143 to be as prepared for the next level at UWT. In other words, the student has learned the same material but in a different order.

· [image: image1.jpg]

How course fits into degree program?

The course CS 142 is a required course for both the Computer Programming A.T.A and Applied Science A.S. two-year degrees (see Appendix #3,4).

Computer Programming

Application-Desktop Track ATA

Applied Science: UW, Tacoma Track AAS-T

Web Track ATA

Associate Of Science - Option Two Degree Requirements

Computer SCIENCE

Computer Programming
5 credits

CS 142

5 credits

[5 Credits Required]

The prerequisite for the course is stated as “CIS 160 Introduction to
Programming and CIS 168 Programming Logic or MATH 120 or instructor's permission”. The A.T.A. students must meet the CIS prerequisite whereas the A.S. students are following the Math prerequisite. The “instructor’s permission” allows for an individual evaluation for those students with prior degrees, workplace experience and other verifiable prior knowledge and skills.

The overall flow of courses for the A.T.A and A.S. degrees are shown below (note that CIS 160 uses the Visual Basic language).

ATA

AS
[image: image49.png]Address | RAHOAGLANDICS 142
assignments.

Demos

SDownloads

)Handouts

Sabs

DLectures

)0nline Java Documentation
S sanples

Tests

Textbooks

) Web Notes

[image: image50.png]To complete the Computer Programming Degree, choose one of the three tracks below:

[#1 Web Track ATA

[CIs_[184 [creating Web Pages 3

CIs_[189_[xmL s

cIs_Jo42_c# s
[Developing Application for the

cis |os4 [Peve s

[Choose one course from the following |

[CIS_[185 [lava Script 5

[CIS_[237 _[preamweaver M @
[Graphics on the web Using

€15 [23° |photoshop 4

[CIs_[240_[bigital Photography 5

[CIS_[264_[C++ Programming s
[Cooperative work

C15 290 |Experience/intemship 3

[# 2 Application-Desktop Track ATA
[Developing Applications in

cis [oas [Develo s
[Developing Application in Visual

€15 255 |pasicET S

[CIS_[282_[SOL Project Development 5

[Choose one course from the following fist:

[CIS_[237 _[preamweaver Mx @
[Graphics on the web Using

€15 [23° |photoshop 4

[CIs_[240_[bigital Photography 5

cls_Jo2_[c# s

[CIS_[264_[c++ Programming 5
[Cooperative work

C15 290 |Experience/intemshin 2

[#3 Applied Science: U of W Tacoma Track AAS-T

[image: image51.png]ASSOCIATE DEGREE: An Associate of Technical Arts degree will be awarded upon successful completion of a minimurn of 90
credits in corses numibered 100 o above. All core and general education list requirements must be met, with any additional
credits to be selected as slectives.

South Puget Sound Community College requires all students to complete an exit assessment process as a requirement for
graduation. This requirement is in effect for the following student populations: all new students as of summer 2003; and
those students who do not maintain consecutive enrollment under the pre-existing catalog requirement. This requirement.
does not apply to students who are seeking a certificate of completion.

COMPUTER PROGRAMMING CORE REQUIREMENTS:

its |Grade/Comments/
Credits |Date Completed

fintroduction to
IMicrosoft Access
oR
[Creating Web Pages
lcIs |14 ((for the Applied 3
Science Track)*
[CIS [148_[Data Base Concepts |5
[Introduction to
c1s [160 |Programming Using s
[visual Basic
[Programming with
15 1166 |Gici nasic
[CIS [168 [Programming Logic
[c1s [182 [sqL
[c15 [p01 [Systems Analysis
[CIS_[285 [Data Structures
[CNA [130_[Introduction to Unix
[Object-Oriented
5 142 Programming 1
[Object-Oriented
[Programming 11

c1s [145 s

cs |43

“5tudents who decide on the Applied Science Track will take CIS 184 in the core instead of CIS 145.

[image: image52.png]Associate Of Science - Option Two Degree Requirements

The Associate of Science is designed for students intsrested in studying math and science for transfer to a four-year college
or university. The program allows students to complete the lower-division prerequisites needed for transfer into upper-
division math and stience courses.

Two study options are available under the Associate of Stience program. Option One focuses on the biological stiences,
environmentaljresource sciences, chemistry, geology and earth science. Option Two focuses on computer science,
engineering, physics and atmospheric sciences.

It is important for you to be familiar with the requirsments of the school to which you which to transfer. Associate of
Science students must have an advisor and consult with him or her each quarter before registratios
We strongly recommend discussing your acadermic plans with a South Puget Sound Community College counselor or advisor
tolearn how best to prepare for the four-year institution of your choice.

ALL COURSES MUST BE AT COLLEGE LEVEL (number 100 or above),

OPTION TWO: This option is designed for students interested in the computer science, engineering, physics and

atmospheric sciences. All courses must be from the General Education List for the Associate of Arts/Associate of Science or
Associate of General Studies.

Communications - 5 Credits Required

WRIT 101 5 credits
Quantitative Skifls - 15 Credits Required

MATH 123 5 credits
MATH 124 5 credits

MATH 125 OF MATH 108 S credits

[image: image53.png]Humanities - Required from humanities General Education List.
5 Credits Required

Sacial Science - Required from social sciences General Education
List.

5 Credits Required
Humanities /Social Science (additional credits required from
sither humarities or social sciences General Education List must be
from a different discipline than either the humanities or social
sciences.)

5 Credits Required
Natural Science

PHYS 201 5 credits
PHYS 202 5 credits
PHYS 203 5 credits
CHEM 140 5 credits

20 Credits Required
Computer SCIENCE
Computer Programming 5 credits
cs 142 5 credits

5 Credits Required
Remaining Credits (Remaining 30 credits such as courses below.)

CHEM 150 5 credits
CHEM 160 5 credits
cs 143 5 credits
ENGR 105** 3 credits
(strongly recommended FOR ENGINEERS)

ENGR 201 5 credits
ENGR 202 5 credits
ENGR 203 5 credits
MATH 108 5 credits

MATH 126 5 credits

[image: image54.jpg]A Content. Form, and Function Outline

Please take five minutes 1o il oul the following g
Content Form Function
(What?) (How?) Why?)

Classiobject defintion

class level members.

Tnstance members.

data (variables)

methods (functions)

[image: image55.png]A Content, Form, and Function Outline

Please take five minutes to filkout the following gric:

Content Form Function
(What?) How?, (Why?)
iheMance/subclass) extends The properties of another class
(12.3,4,5,6,8,9, 1) extends | while adding its own functionality. Java uses the extends keyword to set the
() inherits classilame’ relationship between a child class and a parent class.
(10) newClasshlame super() (1) Defines a class as a mernber of another (higher) class
@ ew classes from existing classes

o) g classes
@) To take the functionality of a base class and add onto it
() Allows class to add specific functionality to a more general class w/o
rewiting code

() Inherits properties from another class; has more fun ction:

)
) The child, it is more functionable.
) More specific
0

ker

(11) To derive new classes from exi
inful (debug)

ng class—makes programming qui

ViSTBTty of parert class | (0) protected 10) Inherited varfables cannot be used in a child class unless they have been
data members (1.7.9) private declared as either public or protected. Declaring them as publ
(23.6) public good idea because this gives all classes (whether inherited or
@) private,public.sratected these members. Instead Java provides a special modifier called
&) protected When a variable or method has been declared as “protected” it means that
@, 10) visible, one way only subclasses of the class can access the variable.

(1) To separate program function from user interfaces
(2) Seeable/fetchable by all children methods

@) Fetchable by methods

@) Ifthe data members are public/protected, then a subclass can access
them otherwise it can’t

) Lets children use the data of the parent class wo allowing other classes
access to

) Can be seen from subclass

7) Yarg/methods are within the class that inherits

) That's what happens when you can see your visible
©) Encapsulated

access parent class) super (0) super refers to the superciass (parent)
mermbers (1) tostiing() (1) To return relevant fields from the parent class

[image: image56.png]|Week 1 - OOP I.doc
Jwieek 2 - 0OP Ldoc
Jwieek 3 - 0OP Ldoc
Jwieek 4 - 0OP Ldoc
Jwieek S - 0OP Ldoc
Jwieek & - 0OP 1doc
Jwieek 7 - 0OP Ldoc
Jwieek & - 0OP Ldoc
Jwieek 8 - 0OP 1doc
Jweek 10 - OOP Ldoc
ek 11 - 0OP I.dac

[image: image57.png]T TIEEET I T e

TSRS Ge% o Totch Sud Trom parent eass.
3 Goos o fotch a1t

{9 You can accoss parents methods or variables by using the super
@Yo » y using thesup
&t

7)o wee methodsvas in parent class 10 do work
) Accasaes on shove . by because t con

) Ussd o aczose aran contncor

{10) To compict s et memersraedad for th subclass

backto the cass from which this

aleinhertance systom, s

€165 spet.metdaned
7 keyword pbic
(1) o encapsatse

& swer
& chssmame var
e

Wswper L] 0 Fist,you con anly callasipalase consucorfom 3 abcloee
015,85, 15 superd consinctor. You canot moke that cal fom any oher subclass methad.
G5 SConi never place any ubelass conseacior Sode ahea of e uperciass
@i ety Somatctor call.
@ puble asalanc) s paen css
{21 Retres an b dosn spciy oty
(6 Cansrucior e calle when 2 new e cremad
(5 Creats the base objctor th chld cass o uild on
15 leses on e f e Sub s et weh prgeres ofthe vt cass
7 Tomn st overy tance ofcloss
8 Armers st fled
. {10 Vs mormbos of o paront class
S it S PO AR 0ol e 1 et e e
} 1.9 agitame mathadans field being accessed o the sipsilass method being called.
| 2.9 setams0 Y Raferance 1o methodsvoribles i poren iss "

2)Ses ing,then goas and 36t tham fom pare
) To et dta fam parent meods

(5)Giuestha child c1asa the data and functionaliy of the parent clss

7 To st fca veralas o 6o work i U €565 & S a1 Ueed it
s, can b diforont ypes

) T access heso methods and uss them

[image: image58.png]Basic Algsbra Test.doc
ConventFormandeunctionOuineon Clsses SUMMARY o
ContentFormandeunctionOuine n nhertance SUMARY doc
oerterTheoor.
orinsPrereiste Check Tet i
sanpl radingShes or C5 142 00P Ldo
Sudent Leating Outcomes Survey RESLT.doc
Sudent Srvey C 142 P 2008 Resdts. cos
StudentSrvey 5 142 pring 2008 Resuts.coc
StudentSrvey C5 142 Winter 2008 Rl doc
sudentSuvey 5 142.d0c
The G5 142 Sl Gde i

= hesaean o0
JUPOATED COLRSE CALENDAR.doc

[image: image59.png]L. Bxplain tundamental object-oriented concepts, such as “object’, “class’,

“method”, “encapsulation”. “inheritance”. and “polymorphiam”:

[image: image60.png]Overview

1. Practice Assignment
o Practice Assianment
o Practice Assignment Help
¥ Learning Outcomes **
- Core Programming Elements
- Data Types
- Variables & Constants
- Selection Logic
1z statement
it ... =1s= Statement
nested ifs
switen Statement
- Iteration Logic
wnile Statement
do ... wnile Statement
zor Statement

2. Assignment #1
o Assignment #1
o Assignment #1 Help
¥ Learning Outcormes **
- Core Programming Elements
- Data Types
- Variables & Constants
- Selection Logic
1z statement
it ... =1s= Statement
nested ifs
switen Statement
- Iteration Logic
wnile Statement
do ... wnile Statement
zor Statement
« Modularization

[image: image61.png]= Modularization
stacic methods
calling / invoking
passing parameters
pass-by-value / pass-by-reference

3. Assignment #2
o Assignment #2
o Assignment #2 Help
o Supplernental Chapter 20
¥ | earning Outcomes **
« Object-Oriented Programming (QOP)
- Objects
top-level opsect
override costring()
- Classes
blueprint for objects
encapsulation / data hiding
- Instance mermbers
data
methods
new operator
reference variables
« Class level members
stacic keyword
variables
- Arrays
Declare / Allocate
Pririitive types
Object types

[image: image62.png]1. Ohjecibe 2. Program ofsiudy
Cortifte % Clerk Raceptionint 7
Chaes ofcarsr 35 Computer Network Adririsation £}
Deguee 187 Computer Pograreing - Application Deskiop 25
Individal clsses 10 Comprier Pogrananing - Applisd SciancelUW Tacoma B
Iob advancemest 2% Computer Prograsaving - Weh Track 19
Peronal Envihrert 2 Datahase Managemest 7
InforationTech Suppot 1
Medical Tramserptionit g
Hot specifed 7
Office Adseiisicn - Ao Specilly 32
Office Adsiistation - Legal Specilty 18
Office Adtistetion - Med Specialty £
Office Adsistation - Web Specialty 10
Office Assistat 1
Other a2
Word Prcessing Specilt 5
PROGRAN COMPUTER PROGRANDTNG Tk | Bl [Good [Weels oo [To
Ingrovemest sy
5 o 8o o vk he gty o progrants ctent? Ippledon [(2% [(N8% [O1% [@
Iy @ (@ (Ol O |©
wer @a% |a9e% |G © |
7 T 8o o vl T el & eptholyons progrants cotent? Apion [(D#% (97 [@7% [0 [@
Iy @z |©8r |(Oh% |0 |©
W @y |aos% |32 |mw |©
T B o yor ok e gty el verel Bt By pgran’s | Apledon [(V204 [0 6% (09— (@ (@
couses? Iy @ o3 @25 O |©
wer G |12e% |@ly |0 |©
7 ooy v youw eppey or el Fting G your | Ageledion | (020% [(1 80% [(016% [0 (D%
couse ofstudy? Iy @ | @2 (@24 | i | @
W Qles |(2e% |Gl |y @
75 ooy v youw oppernty s o s clsses ot wl | Applieaon | (5% (10 %% [(N25% (@%@
e Iy Ga% (@3 |mhv | Onw | @
W Glen |3 | @ | Gisn | @
IO Howrwonld o v yous oppestny o el oo lsses S Times Tl | Apelieion | (0% (@527 [0 2% [OV12% [@)
os? s @y @2 |Gun | D1iv | @

[image: image63.png]W

[©153

[©153

0% [T

7% [

25 o well 0 The prorequiite cises epars you Br e ol 0l
Follow?

Tpplton [(187
is

0%

9% |7
()67%

(3%

Mo (@87
©0% | @0%

W Gex [ayes | ©% |@u%
Tl [Patton o
AT Ereyouvorking whils dending slo08 Tpleaon [(9)37% | (1 5% | G120
is @2 @B | @
W @3 |@av |anes
Tor T T fnmwer
T2 Ereyou cumorlly ok g i s TRl e Bled o you comse oT Aty Tpleaon| (1987 | ®52% [Q5%
is @3 e | Gz
W M3 |agsw | @i
T3 Hare you Fad e cpportrty o sl i o7 comesps you R Bamad myowr o7 | Appliaton (19697 [(®)32% [(4%
is @3 |5% | W%
W 3% |0 s |91
TS fveyou eaing obactives sabeTed Ippleaon| (1987 | ®32% [(%
is ©Ere | @2% | 1%
W 9wy |@ien | a)sn
ey | Usally | Sometizmes [Wever [o Axower
D you ol 11 mgzored prerequtts whem o lRE o Eppeton | (10) 0% | (1D #% [(16% () ©
clases s Mm% |@as (s |0 ©
W Guex |azes|@iss |0 W%

3. Whatled you to chooss s program ofstudy?

Dettep pplications:

B seamad e 2000 chs o, Tetad Web Deselopmat progpms ki school ad rntsd 1 splre the Sld mare

Lgraly mjoy nghesting sotr.
Wk s

Sice T 7 e o, e boen fscted by comprtrs

Lifne A 11
B Ty - 18 Sy 13 15 D 8 i 1. T B ol e . T v 8 1AM 50 iy T s B 1o
Ve ot 0t e g, L going it my ASsocide of A, ar ity v sl Ping one o mer of s b f poss bl opprtis il
i Could oo i 0 SO PO o R coding, Al he vy 10 ATV e opering Sy ey, e g of e aed
e b e & oy st o s 2 o6 ol s of o Ly o hi ki hs S,

Eperioce - eed ok
B et s oy i, o s programas.
By e

As can be seen from the previous flow diagram, there is currently a juncture (after CIS 160) where the student may chose to continue on in Visual Basic (CIS 166, 266) or follow the object-oriented programming series (CS 142, 143) using the Java language.

Also, note that A.S. option II students can enter CS 142 directly from a first-quarter pre-calculus class with absolutely no programming or computer experience.

The A.T.A students must take all four courses (142,143,166,266) and the order is not specified, students entering each of these courses can have widely varied levels of programming experience while still meeting the prerequisites. Unfortunately, this leads to advising problems of “when” to take “what” for those students.

The A.S. option II transfer students are required only to take CS 142. These students typically have a stronger background in math (prerequisite of Math 120 Pre-calculus I) which translates to superior problem-solving skills but the students may lack any “programming experience” in dealing with language syntax, software IDEs (Integrated Development Environment), terminology, etc.

Additionally, the prerequisites are not enforced. Students may sign up for the course regardless if they have completed the stated prerequisite. I have for several quarters had the Division secretary check student transcripts to see how many have met the required prerequisites. The results indicate anywhere from 3 to 6 students per quarter do not meet the prerequisites.

Who are our students?

Over the past three years, the CIS department has conducted a survey of student perceptions each spring quarter. A portion of the results of the latest survey available are shown below.

SPRING 2005 STUDENT PERCEPTION SURVEY FOR CIS.

	1. Objective
	
	2. Program of study
	

	Certificate
	36
	Clerk Receptionist
	7

	Change of career
	35
	Computer Network Administration
	54

	Degree
	187
	Computer Programming - Application Desktop
	25

	Individual classes
	10
	Computer Programming - Applied Science/UW Tacoma
	9

	Job advancement
	26
	Computer Programming - Web Track
	19

	Personal Enrichment
	24
	Database Management
	7

	
	
	Information Tech Support
	16

	
	
	Medical Transcriptionist
	8

	
	
	Not specified
	17

	
	
	Office Administration - Admin Specialty
	32

	
	
	Office Administration - Legal Specialty
	18

	
	
	Office Administration - Med Specialty
	29

	
	
	Office Administration - Web Specialty
	10

	
	
	Office Assistant
	4

	
	
	Other
	42

	
	
	Word Processing Specialist
	5

The A.T.A students (both Application Desktop and Web track) total 44 students and the A.S. students total 9 or about 80% to 20% respectively. See Appendix #5 for more of the survey results. [No numbers available for AS option II students.]

Unfortunately, the survey does not include demographics revealing the sex, ethnicity, or age of students. This would provide documentation for under-represented groups where resources could be used to attract more women and minority students leading to more diversity in the classroom. An anecdotal analysis based on who I see in my classes is that there are at most 2-3 female students, about 1/3 minority (mostly southeast Asians—Vietnamese and those from southern Asia—Indians), some International and a majority under 25 years old.
Student surveys

At the beginning of each quarter, I conduct a survey of my students to get a feel for who they are. The questions are:
· What is your major?

· Provide a brief explanation of your background as it relates to computer programming.

· What are your expectations for this course?

· Provide a brief description of your current career plans

Here are three different responses from the student surveys of CS 142:

Background

I have no experience in computer programming.

I took CIS 160 in spring quarter and CIS 168 in winter

Perl, PHP, Basic, C/C++, Java, JavaScript, MySQL with a

focus on web programming.

The student responses to the “background” question often reveal a wide range of abilities that the students have upon entering this class. That is anywhere from very little experience (including not even meeting the prerequisites) to having had substantial prior coursework. This mix of audience presents additional challenges in teaching this course.

Here are four different responses regarding expectations:

Expectations

To learn OOP

To get a basic understanding of programming with Java.

Learn something new. Have fun.

To pass!

The first two student responses to the “expectations” question matches what one would expect the students to say and that is to learn what the course is all about—OOP and the Java language. The last two responses provide an insight into student perceptions about learning; ranging from “this will be easy and fun” to “I just want to get through this”.

Here are four different responses regarding career goals:

Career

Once I graduate then I would like to find job in programming.

I want to be a computer programmer, preferably for games.

Hopefully get an internship at Microsoft after I transfer to the UWT.

Engineer--my precise plan is still sketchy past that (Robotics,
mechanical, or computer).

The student responses to the “career plans” question reveals that some students are looking for quick attainable goals such as a job whereas others recognize that they will be pursuing further educational goals. For many students their career goals will take considerable commitment in my courses and many others.
What constraints do we operate under?

Since the “Dot-com bust” our school like so many others has experienced a sharp decline in the number of students enrolling in our classes. The perception of a poor job market (lack of jobs, competition from unemployed dot-comers, and out-sourcing to foreign markets), and stigmatisms like the work is for geeks “only” has drastically reduced student interest. Further insight into this issue can be found in the article titled “Interest in CS as a Major Drops Among Incoming Freshmen” by Jay Vegso of the Computing Research Association. A screen shot of the first part of the article is included in the Appendix#6.

Due to low enrollment it has been difficult to offer both a day and evening section for our introductory courses. This exacerbates the low enrollment as we may be losing potential students who are able to attend only during the day or night or need to finish within a certain time frame.

Many of our students are inadequately prepared for the rigors of our courses. This includes poor reading and writing skills, study habits, and time management skills. However, the most troubling deficiency is in their math and problem-solving skills. The prerequisite for our CIS 160 Introduction to Programming and CIS 168 Programming Logic courses is only MATH 090 (Basic Math) a below college-level math course (probably below high school level). The students in Math 90 have three more quarters more of math before they reach the college level.

Prerequisite checking or blocking is not enforced upon registration and the prerequisites are sometimes overlooked due to low enrollment and scheduling pressures. Very few students are advised to assess their incoming skills and personality type for suitability to the career choices available in computers. The use of tools like the Myers-Briggs Type Indicator (MBTI) for the assessment of personality, the Computer-Assisted Career Guidance Assessments (programs like SIGI Plus [System of Interactive Guidance and Information] and Discover [requires users to answer a variety of questions about interests, skills, and values]) could help ensure better student success.

Vocational rehabilitation students are sometimes sent to our program that are so far below college level that they could not possibly finish with the time-line and dollars provided by the program. The counselors often lack an understanding about the intensity of computer programming courses.

Budget constraints restrict our ability to provide adequate resources for student retention. About 1/3 of the students in programming class either drop out or do not receive a grade of C or better. Student retention could be improved by providing tutoring services similar to the school’s already existing “Math Lab” and “Accounting Lab” tutoring services (a free drop-in tutoring center for students having difficulty in their math or accounting classes respectively) and the availability of an Instructional Aide within the classroom to assist with hands-on lab exercises and general computer issues students may have during class sessions. This additional support is critical whenever course enrollment exceeds 15 students. It is not possible for the instructor to adequately help each student in the limited time span of the class.

Lack of funding also restricts the marketing of our program and efforts to reach out to under-represented student populations such as women and African-Americans.

My own personal constraints are probably some of the same that other teachers face: class size (although less of an issue in recent times), heavy teaching loads (number of different course preps), inadequate support, the uncertainty of scheduling, and bureaucratic hurdles. On top of my teaching schedule, I’m expected to keep current in my field, develop new coursework to meet industry changes, determine textbook selections, assure hardware/software compatibilities and functionality, provide student advising, support departmental needs such as course scheduling and budgeting, and committee work.

Course Objectives

The course objectives for CS 142 as stated in the course syllabus are:

Students will be able to:

A. Correctly apply the syntax of the Java language;

B. Develop and test programs using the Java language;

C. Demonstrate knowledge of object-oriented design;

D. Explain fundamental object‑oriented concepts, such as “object”, “class”,
“method”, “encapsulation”, “inheritance”, and “polymorphism”;
E. Apply proper design and documentation principles to the writing of programs

Although not formally stated in the course syllabus, I have some personal course objectives that influence my teaching. These are related to:
· Skills

· Context
· Environment

Skills

Students should develop fundamental skills such as problem solving and abstract reasoning through computer programming. This will include learning the basic features of the programming language as well as good design practices that result in correct, robust and maintainable programs. Unfortunately it is easy to become too focused on the language and not enough on problem solving and abstract reasoning. These skills are crucial for the other computer courses that our students will eventually take and are also transferable to a wide range of situations. I would like for fundamental skills to be a main focus of the course but, I admit I’ve found it challenging to stay focused on the “big” picture while dealing with the “little” picture of helping students write syntaxically correct code.

Context

Students should come away from this course with a sense of and appreciation for Computer Science as a discipline. All too often this course has been too narrowly focused on programming. This gives students an inaccurate picture of what computer science is all about and may cause some students to choose to not continue in computer science because they don't see how it fits into the larger scheme of things.

Environment

Students should experience a friendly learning environment that is cooperative, comfortable and minimizes any feelings of inadequacy, particularly for students with less experience and confidence. It is also my goal to take steps to help alleviate the frustration of learning to program so that all the students may feel a sense of satisfaction and accomplishment from what they are able to achieve in the course. This will hopefully help to dispel the reputation of the class as extremely difficult and inhospitable. Lastly, I want the students to enjoy their experience and have fun so that they look forward to the next level.
Syllabus (course outline)
TITLE: Object-Oriented Programming I
COURSE ID: CS 142
CREDITS: 5
REQUIRED TEXT AND MATERIALS:

Text: Introduction to Java Programming with JBuilder 3rd edition by Y. Daniel Liang

Pearson/Prentice Hall 2004, ISBN 0-13-143049-1

Recommended: The Object-Oriented Thought Process by Matt Weisfeld

Sams publishing 2004, ISBN: 0672326116

Materials:

· Diskettes and folder with horizontal pockets for homework

· One ream of laser printer paper to be given to instructor for class and lab use

COURSE FEATURES/POLICIES:

Expectations:

Academic honesty: Breach of any of the categories (cheating and plagiarism) found in the document Statement of Academic Honesty may result in dismissal from the college as outlined in the Code of Student Rights and Responsibilities. A copy of the document on Academic Honesty may be found on the SPSCC intranet. Knowledge of the information contained in these documents is the student’s responsibility.

Homework: Homework may be done in the computer lab or elsewhere if the student has access to JBuilder by Borland (JDK 1.4). Homework must be in a folder and must have an assignment grade sheet, a diskette with the assignment project files, and all printed materials required by the assignment. Include only the current assignment in the folder and on your disk (I do not wish to be responsible for selecting the files you mean to submit for evaluation!) A folder/disk that contains more than the current assignment will be returned UNGRADED. A disk that contains a virus or is unreadable will result in no credit given for the assignment. Homework will be graded using the Grading Sheet that is available on the R: drive. Students in the same class may work together as a group on a homework assignment (see Group Work). If two to four students work together to complete an assignment, only one folder should be handed in, with every student’s name listed on the folder. All parties need to actively participate in completing the assignment.

Support Services Available: The hours for the Computer Lab are: Monday through Thursday 7:00 am to 10:00 pm; Friday 7:00 am to 5:00 pm; Saturday 1000 am to 4:00 pm (check for changes). There are no Lab Fees but students are expected to contribute a ream of 8” x 11 ½” paper for lab and classroom printers. The paper may be given to the course instructor. Lab technicians may be able to answer some questions related to your computer assignments.
Financial Aid: Students receiving financial aid should ALWAYS check with Financial Aid prior to withdrawing, signing an incomplete contract, changing to an audit, or receiving an F or V grade in a class.

Class Participation/Attendance: Attendance is up to you. However, you are responsible for finding out what you have missed before you come back to class. Please do not attempt to take up class time to catch up. Office hours are for students seeking clarification and greater understanding who have listened attentively to classroom presentations and participated in classroom activities AND who have NOT spent class time on the Internet, in chat-rooms or communicating using e-mail.

Missed Exams and/or Assignments: Each homework assignment has a due date listed on the assignment sheet. A loss of two points per day late will be assessed; in addition, no assignment will be accepted past one week overdue (see Grading Policy). Homework must be turned in at the beginning of class on the due date or left at the lab checkout counter by the close of the lab on that day (ask the Instructional Tech to date stamp). Tests will cover material from the textbook, homework assignments, and lectures. Questions may be a combination of multiple-choice, true/false, short answer and problem analysis. Unexcused absence from the exam will result in a score of 0 for that exam. Excused absences must be requested in advance of the in-class exam.

Evaluation:
Homework assignments (7):

25 points each (175 total)

Portfolio (in-class Labs):

35 points

Tests (2):

100 points each (200 total)

Final:

150 points

 (560 grand total)

	93 – 100
	A
	90 – 92
	A-
	87 – 89
	B+

	83 – 86
	B
	80 – 82
	B-
	77 – 79
	C+

	73 – 76
	C
	70 – 72
	C-
	67 – 69
	D+

	63 – 66
	D
	60 – 62
	D-
	Below 60
	F

SPRING 2006 TENTATIVE COURSE SCHEDULE / CALENDAR / DUE DATES:

	Week
	Chapter/Topic
	Assignments

	Apr. 3
	Ch. 1-2 Intro to Java / Data Types
	

	Apr. 10
	Ch. 3-4 Control Statements / Methods
	Practice (Due Thu, Apr. 13)

	Apr. 17
	Ch. 5,7 Arrays / Strings
	#1 (Due Thu, Apr. 20)

	Apr. 24
	Ch. 6 Objects & Classes
	#2 (Due Thu, Apr. 27)

	May 1
	Ch. 6, 17 Continues / Vector only
	Exam 1 (Tue, May 2)

	May 8
	Ch 8 Inheritance & Polymorphism
	#3 (Due Tue, May 9)

	May 15
	Ch 8 Continues
	#4 (Due Thu, May 18)

	May 22
	Ch 9 Abstract Classes & Interfaces
	Exam 2 (Tue, May 23)

#5 (Due Thu, May 25)

	May 29
	Ch 16 Stream I/O
	#6 (Due Thu, Jun. 1)

	Jun. 5
	Ch 15 Exception Handling
	#7 (Due Thu, Jun. 8)

Portfolio (Due Thu, Jun. 8)

	Jun. 12
	Finals Week
	Final Exam (4:30-6:30p Jun. 13)

COURSE DESCRIPTION:

Introduction to object oriented programming with Java. Essentials of object-oriented programming: classes, objects, inheritance, polymorphism, and encapsulation. Fundamental aspects of the Java programming language including types, variables, control structures, arrays and strings, streams, files and exceptions. Prerequisite: CIS 160 Introduction to Programming and CIS 168 Programming Logic or MATH 120 or instructor's permission.

COLLEGE-WIDE ABILITIES:

The Core Abilities for the Associate of Technical Arts degree in Communication, Computation, and Human Relations as shown in the catalog have been developed via Writing 101, CIS 210 or TCOM 106, CIS 168, and SPCH 115 or CIS 109. In addition, such competencies as using active listening and critical thinking skills are applied within the Computer Science course.

STUDENT LEARNING OUTCOMES:

Students will be able to:

F. Correctly apply the syntax of the Java language;

G. Develop and test programs using the Java language;

H. Demonstrate knowledge of object-oriented design;

I. Explain fundamental object‑oriented concepts, such as “object”, “class”, “method”, “encapsulation”, “inheritance”, and “polymorphism”;

J. Apply proper design and documentation principles to the writing of programs.

COURSE CONTENT:

K. Introduction to Objects

1. Basic Concepts

2. Abstraction and Modeling

3. Objects and Classes

4. Object Interactions

5. UML (Unified Modeling Language)

L. Java Environment

6. Running a Java Application

7. Java Class Library

8. Javadoc Standards

M. Fundamental Language Elements

9. Identifiers

2.
Types

10. Variables

11. Arithmetic Expressions

12. Mathematical Functions

N. Control Structures

13. Statement Blocks

14. If/Else Statement

15. Logical Operators

16. Switch Statement

17. While Loop

18. Do Loop

19. For Loop

20. Continue Statement

21. Break statement

O. Arrays and Strings

22. Defining Arrays

23. Using Arrays

24. Arrays of Arrays

25. String Literals

26. Array of Strings

27. String Objects

28. Operations on Strings

29. StringBuffer Objects

P. Defining Classes

30. Variables and Methods

31. Parameter List

32. Constructors

33. Method Overloading

34. Packages

35. Access Attributes

36. Inner/Nested Classes

Q. Extending Classes and Inheritance

37. Class Inheritance

38. Polymorphism

39. Abstract Classes

40. Super class

41. Interfaces

R. Exceptions

42. Types of Exceptions

43. Handling Exceptions

44. Defining your own Exceptions

S. Streams, Files, Input/Output

45. Input/output Operations

46. I/O Classes

3.
Defining a File

47. Byte Input/Output Stream

48. Character Input/Output Stream

49. Random Access Files

50. Storing Objects in a File

T. Utility Classes

51. Collections of Objects

52. Iterators

53. Vector Collection

54. Generating Random Numbers

55. Dates and Times

Course Content

The annotations below describe my decision process in formulating the syllabus for this course.

Textbook choice:

The primary reason for the textbook choice is its integration of the JBuilder software currently in use within the classroom and open labs. In addition, the textbook has these qualities:
· The topic order seems to basically be in line with the course outline
In order to save students money the same textbook is used for CS 142 and CS 143. The Liang textbook lends itself well to this approach by having the sections indicated below. I chose to cover Part 1 and 2 and some of Part 4 (exceptions and disk I/O) in CS 142 and Part 3 and the remaining sections of Part 4 in CS 143.

Part 1 - Fundamentals of Programming

· Introduction to Java and JBuilder

· Primitive Data Types and Operations

· Control Structures

· Methods

· Arrays

Part 2 – Object-Oriented Programming

· Objects and Classes

· Strings

· Inheritance and Polymorphism

· Abstract Classes and Interfaces

· OO Modeling

Part 3 – GUI Programming

· Getting Started with GUI Programming

· Event-Driven Programming

· Creating User Interfaces

· Applets

Part 4 – Developing Comprehensive Projects

· Exceptions and Assertions

· Input and Output

· Java Data Structures

· Multithreading

· The book has many self-review exercises (with answers) and some programming exercises at the end of each chapter.

· The book is quite readable and seems accessible to students. It has plenty of “Note”, “Caution” and “Tip” boxes, code examples, and a case study for each chapter.

Prerequisites:

The CIS 160 prerequisite reflects the fact that this course is not meant to be their very first programming class (although for A.S. option II students this very well may be their first course—see earlier discussion of curriculum flow) but instead their first “object-oriented programming course. A basic understanding of core programming elements is expected (i.e., variables, if statements, loops, functions, and arrays).

Objectives and course content:

The course objectives and specific course content reflects the “standard” CS 1 course as outlined by the ACM (see Appendix#7). I have chosen to cover the material in a non-GUI or very limited GUI (Graphical User Interface) fashion. The reasons for this are two-fold. First, although the Java language has extensive GUI support through Swing it is made up of many classes, subclasses and interfaces working together. To better understand the dynamics of working with these classes and interfaces, the students first need to learn about the OO concepts. Second, the time spent on setting up the UI can detract from learning the fundamental concepts.

Calendar and schedule:

The course is fast paced—we cover a lot of material. The CS course prefix was chosen to alert/inform students that this is a transferable course to a four-year institution and may be a more rigorous course than other CIS courses. In addition, the A.S. option II transfer students are required to take only this class and not the follow-up CS 143 (OOP II). Therefore, I have tried to cover much of the OOP concepts in CS 142 while using CS 143 to add on the GUI material and refine their OOP skills.
Teaching Methods

The course is taught in a hands-on room (each student has a PC and the instructor’s station is cabled to an overhead projector). The resources used in the course are as follows:

Handouts (Read & Review–Word documents)

I provide many handouts that further explain/elaborate specific topics covered in the textbook. I do this both to supplement the textbook examples (depth of coverage) and to address a few topics not covered in the textbook (breadth of coverage). These handouts along with their textbook can be used during the tests (“open book & notes but no computer”) which motivate the students to review the handouts and keep up with the textbook reading. My own personal learning approach is to READ and look at examples (“learn by example”). Therefore my course materials weigh heavily towards reading (textbook, handouts, etc.) and examples (demo/sample programs, labs, assignments, etc.) The Appendix#8 includes a sample handout.

Labs (Completed in class–Hands-on exercises)

The in-class lab exercises are completed following “pair programming” guidelines and are to be “ideally” completed within the class period. The students are given a lab worksheet indicating which program files they will need to access from the network drive and an explanation of the task with supporting notes. Most of the labs involve programs with a handful of missing lines of code (this reflects the limited class time and the desire to emphasize specific points) for the students to complete. Each lab is targeted to a specific learning outcome which is detailed in a supporting web page titled “Labs Outcomes”. I use pair programming because the students gain from the experience of working with another person, having to explain their thinking, and gaining from another perspective. The students report that working together improves their confidence. Circulating in the room enables me to watch them work, answer questions (if both students in the “pair” are stumped), and gauge their level of understanding. Students are more successful with homework if they have had class time to work out code/programs while I can observe. The Appendix#9-11 includes an example Lab sheet, exercise code, and learning outcomes.

Demos (Learn-by-Example–shown on overhead projector to class)

Often as part of my lecturing, I will present demo code to the class to talk about. These programs are small and cover single concepts. I believe it’s helpful to have a classroom discussion on core programming elements like IF statements. Students have access to the demo code through the network so they can view and run it on their computers. The Appendix#12 includes a demo program.

Assignments (Homework)

I allow students to work together collaboratively on assignments (from 2-4 in a group). I think this promotes skills in working as a team and students learn more when they have to explain a concept to a fellow student. Homework, although done outside of class, is often discussed in class. Some of the most valuable and efficient learning happens when the student can pin-point their own misunderstanding and formulate a question. This is also a time I use to highlight multiple approaches to coding and to compare options from different programming languages. I use this time to explain the “bigger” picture (“what advantages does one way have over the other way”, “problems might we run into later”, etc.), in addition to the language syntax, small scale problem-solving and fundamental OOP concepts.

Power Point Presentations (from the text and my own)

I usually use a power point presentation as a tool to introduce a topic, or as a review at the end of a culminating unit. Students have access to each presentation so they can listen, watch and ask questions.

Miscellaneous

Other resources include: weekly summary notes, “local” web pages on specific topics, textbook reading review (highlights important pages/topics), review sheets for tests and practice test questions.

Classroom Assessment Techniques (CATs)

I have just started to use CATs to evaluate student understanding or misunderstandings so I can address them promptly. Because CATs are anonymous and can be done very quickly it allows me a glimpse into how the students are receiving the information rather than just how great of a job I am doing at sending the information. Often the students know exactly where they are confused. By gathering the information on a periodic basis, I can retarget the focus of the next class period to address concerns or questions before the students get too lost. It also helps to draw the students into a trusting learning environment if they know I am reading and responding to their individual feedback. The Appendix#13-16 includes some examples.

Here’s a screen shot of course resources available on a student accessible network drive.

Philosophy of Teaching Statement
How do I think learning occurs?

Based on my twenty years of student observation and experience teaching computer programming courses, I believe that students learn best when the instructor is well organized, has a breadth and depth of knowledge in the subject area and has the ability to tailor the teaching approach to individual student’s learning styles.

A collection of exemplary course resources allows me to select examples which address particular student misconceptions and to re-teach selected topics with a variety of approaches. A well organized and thought-out flow of objectives allows students to assimilate new information into their current knowledge base and perhaps draw comparisons between different computer languages and applications.

Exemplary course resources are reflected in not only an adequate number of resources but also in their diversity. For example: handouts, PowerPoint presentations, code examples, web pages, practice exercises, readings list, homework assignments, etc. This diversity of materials helps keep the curriculum interesting.

The learning objectives/outcomes should reflect the “best practices” of the field and build upon one another to a successful conclusion based on the goals of the course.

How can I facilitate this process?

The students don’t always grasp or appreciate the flow of concepts and skills because they lack the “big picture” perspective, however, the students do value being asked for their feedback. Integrating periodic student feedback regarding, for example, the pace of the course, the “muddiest point” of a lecture, what would be useful to them as the learner, etc., builds their level of ownership and commitment to their own learning process. I believe their effort increases when they realize they are working in partnership with the instructor.

Some students learn well with the lecture format, however, it can’t be the exclusive teaching methodology. My experience has been that a strong and well organized lecture component is a productive way to help students organize information and to disseminate “chunks” of content. However, mixing up the teaching methodology helps students assimilate and retain the information. To facilitate this process I allow time for students to ask questions, partner up the students to work together on lab exercises, put students into small groups to discuss a “prompt” question or give students the chance to “be the teacher” by detecting errors or “debugging” a fictitious student’s work. Employing multiple methodologies to interact with the course content helps students master the material, but also fosters their process skills, such as critical thinking, writing, and problem solving.

What goals do I have for my students?

Specifically, in my class I want students to respect and value the opinions and ideas of others. To not be afraid to ask questions, to display a desire to learn, and to help each other. I want them to experience aha! moments as often as possible during the quarter. I want them to be so absorbed in the world of programming that they leave class each day wondering where the time went and look forward to returning the next day.

In general, I want my students to have an idea of what it means to be a programmer in the real-world. I want them to be able to apply what they have learned to new situations and to develop confidence in their own ability to advance their knowledge of programming. To be a good computer programmer means making a commitment to continuous learning whether in private practice, on the job, or in an educational setting. Constant changes and upgrades to languages, applications, and the interface with other technologies means that students in computer programming careers will need to become “self motivated learners”.

What goals do I set for myself as a teacher?

I strive to be patient. To realize that being an outstanding teacher is a two way street. I want to understand the needs and goals of my students and to incorporate the information into my teaching approach. I strive to treat my students with respect and fairness, to acknowledge their accomplishments generously and encourage them in their shortfalls. I strive to have empathy for individual student’s circumstances and to have the patience to let them articulate their difficulties. I commit to being a “continuous learner” myself; to stay current in languages and work-force needs. I strive to direct students toward aspects of programming which are in line with their strengths and abilities.

What do I do to implement this philosophy?

I try to infuse my teaching with the genuine interest and enthusiasm that I have for computer programming. I keep the atmosphere in my classrooms positive and humorous, even when the material is difficult. I am willing to slow down or accelerate the pace if need be. I foster an environment which views mistakes as opportunities to learn. I encourage discussions and the debate of alternative methods. I expect students to contribute material from their own experiences. I seek out multiple resources and methodologies for teaching each topic. I approach students who may need extra help and show them how to establish pathways of support (my office hours, finding help in the lab, seeking tutoring support, etc.) Lastly, I return to the classroom as a student, myself, so I can remember the stages of learning and relate to the varied emotions, stresses and strains of being a student.

Evidence of Student Learning

I have chosen to look at hands-on lab exercises, homework assignments, and student learning feedback tools in order to “see” evidence of student learning.
Lab Exercises

Labs are completed in class as hands-on exercises. The students work in pairs following “pair programming” guidelines. By the end of class period (50 minutes), each student prints out the completed work with their name at the top. These completed exercises along with the lab sheet are collected by each student to be placed in an individual portfolio which will be turned in at the end of the quarter for grading. A checklist is provided to help students verify successful completion of all the labs.

Each lab exercise has three to four parts where the students complete missing lines of code in small programs they access from the network. In addition to comments within the code as directions/guidelines, there are helpful notes on the lab sheet. Lastly, each lab has a list of learning outcomes associated with the exercise.

For example:
[image: image2.png][Class Lab 8

Part 1

Cornplete the class files for a Circle, Square, and Triangle found in RAHOAGLANDICS
142\Labs\Methods\Circle.java, Square java, Triangle java and the testing program
TestShapes java that calculates the areas of each shape. Hint. use Math random().

Math.Pl and format method from DecimalFormat class (iava text)

Java: Constructors

When you create & new Instance (object) of a dass UsIng the neu keyword, a constructor fo that lass s calld. Constructors are used to
Infiaze the felds of an object. Constructars are essentaly methods, but Wit some mportant dferences

+ Constructor name is cass name. Consiructors have the same name 5 the clast.

« Default constructor. f you dorit defne 8 constructo for a clss, a default parameteress constructor s automatially created by
e compler. The Gefauk constructor Call the parent constructo 3nd rbakies ol el £ ther et Vel (2erd o rmeric
e, A fo abject references, and fase or bockans).

+ Default constructor created only if there are o constructors. i you define ny constructor for your class, a defot
constructo s 1o longer automaticaly created.

« Differences between methods and constructors.

© There s o return type given n a constructor signature (header)
o There s o return statement In the body of the consiructar
o The frstine of a constructor must ether be a cal on another Constructor i the same lass (usig this), o a callon the
Superciass constructor (Usng super). If the st ine s Nelther of these, the compler sutomatcaly inserts a c o the
parameteress superdass constructor,
These are ot needed because th value S obvious. The "Yakie® I I the ks of the object that s created. These dfferences n
Syntax between 8 constTLCTor and MeEhod i Sometmes hard to see when looking t a g,

+ this - Constructor calls another constructor. Often 8 constructor wih fow parametars wil cal

parameters, gving default values for the missing parameters. Use s 10 call other constructors i

+ supes. Use supes o cal 8 constructor i a parent las. Caing the constructor fr the superciass must be the st staterent n the
body of 8 conSITuctor 11 you are Sabsfed with the defoult consTuctor n the Superciass, ther 1 7o need to make a ca to It because
It wil be supphed automaticaly.

Hands-on Lab Exercises

 [image: image3.png]£ R:\HOAGLAND|CS 142iLabsiLab Outcomes. htm

[image: image4.png]Class Lab 8
¥ L earning Outcornes **
o Classes
- Constructor
Object instantiation (initial state)
new operator
Difference between constructor and methods
no return type
name is class name
« Accessing instance methods
. dot notation
« Method signature
method header
distinguished by arguments
= Method overloading
constructors
other methods

The successful completion of this lab exercise provides me direct evidence of student learning as relates back to course objectives/outcomes. I am able to “connect” this activity back to the stated objectives/outcomes of:
[image: image5.png]udents will be able 1O

A Correctly apply the syntax of the Java language;

B. Develop and test programs using the Java langlage;
C. Demonstrate knowledge of object-oriented design:

Homework Assignments

Student homework (assignments) is evaluated using a grading sheet outlining the assessment criteria and point values. Homework assessment is based on overall achievement (excellent, good, fair or poor) and how well they matched the objectives/goals (right-on or way-off). I share with the students as a group my “analysis” of their work through anonymous code snippets and program execution snapshots stored in a folder called “TheGoodTheBadAndTheUgly” (although rarely is anything “Ugly”).

[image: image6.png]) TheGoodTheBadAndTheUgly

Each assignment has in addition to a problem description a list of learning outcomes. The problem description includes statements like:

“Write a Java class named Employee”

“Write a Java class named EmployeeTest to:

 Prompt the user for number of Employees to process

Create an array of the Employee class to hold the Employees

Have a menu driven interface for:

Load the employees (prompting the user for info)

Modify a specific employee’s info by his/her ID number

Print the Employee object information to the screen”

Whereas, the learning outcomes are listed as:

Overview

[image: image7.png]&) R:\HOAGLANDCS 142\ AssignmentsiHomework.htm

Assignment #2
· Object-Oriented Programming (OOP)

· Objects

top-level Object
override toString()

· Classes

blueprint for objects
encapsulation / data hiding

· Instance members

data
methods
new operator
reference variables

· Class level members

static keyword
variables

· Arrays

Declare / Allocate memory
Primitive types
Object types

The learning outcomes hopefully help the student to see “the bigger picture” as to my expectations of what they are to learn by correctly completing the assignment. I let them know that although they may have solved the “problem” that I may not concur unless the solution reflects the learning outcomes too.

These assignment learning outcomes help me connect back to the course syllabus and confirm that the homework is helping the students to achieve the course objectives/outcomes.

[image: image8.png]udents will be able 1O

A Correctly apply the syntax of the Java language;

B. Develop and test programs using the Java langlage;
C. Demonstrate knowledge of object-oriented design:

The Appendix#17 includes a variety of [image: image9.png] TheGoodTheBadandTheligly

feedback from different assignments.

Curriculum Assessment Tools

The CATs are included as a way to see what the students feel they have learned. I use fairly simple ones that take the least amount of time to be completed by the student and processed by me. The first example is a “Minute Paper” conducted during week three on a lecture about arrays. Listed below the bulleted question are the student responses.
Please take a minute or two to answer the following questions:

· What was the most important idea you learned from today’s class?

1. How to make arrays

2. (a) How to assign the array (b) Exit out from the GUI

3. Java arrays always start at zero

4. Difference between arrays in VB.Net and Java

5. Being able to declare, allocate & initialize arrays all at one time

6. How we can store objects in arrays

7. Declaring/allocating arrays simultaneously.

8. How to initialize arrays

9. Probably the shortcut to initializing arrays & copying arrays

10. Array syntax

11. Creating and initializing arrays

· What is a question you still have about the ideas we discussed in today’s class?

1. How to use methods to call from an array

2. No questions

3. I know program doesn’t close on its own when using GUI. But why?

4. It would be very helpful to walk through some example coding in class.Actual start to finish in JBuilder when we start working w/ a new concept.

5. How do I create objects, are they classes?

6. Had some trouble initializing multiple values to an array. Example: after declaring/initializing

Array1 = {1,2,3}; //produces error

8. None

9. No

10. Reference variables

11. A bit confused about arrays of objects

Their responses provided me feedback that for this lecture on arrays that a majority of the students recognized and understood the important concepts about arrays. It also showed that I needed to further review and explain the concept of an array as an object in Java and that an array could hold objects in addition to primitive values.

The next example is a “Pace” CAT given at the end of the first week of class.
How do you feel, overall, about the pace of this class (just right, too fast, or too slow)?

· Rate the pace for just yourself

1-Good so far

2-Too fast

3-just right

4-It’s fine and I haven’t taken 160

5-too fast right now, but for reasons that I expect to diminish as class progresses

6-Feeling a bit lost but I have had no Java experience and while I understand what
you are talking about because of my past VB class I do not know where to start
with language

7-too fast-couldn’t start Lab 2

8-It’s a little fast, but I manage to keep up

9-To fast. Probably better if I had the book to read though. Having trouble with
syntax

10-feel too fast

11-too fast

12-A little fast, but good

13-Just right

14-I like the pace; it’s not break neck yet there’s no wasted time

15-It’s not too fast but it’s not just right for me either. It’s in between the 2

· Rate the pace with respect to all the students in the class
1-Don’t know

2-Too fast

3-too fast
4-They should have an easy time with it

5-It seems like everyone else is smarter than or ahead of me, but it’s probably

just my imagination

6-I think there are several folks in the same boat

7-I know Richard (student) was lost too, -the guys sitting behind me needed

help—can you check in w/us after a couple/few steps. I’m slow

8-

9-Don’t know

10-just right

11-just right

12-Don’t know

13-Just right

14-just right

15-I think its just right

I find this feedback especially valuable early on in the quarter. When the students respond the first time to this CAT and I share the results with them they are most often completely surprised. It helps to bring out in the open what most teachers understand and see in many of their students’ hesitation to ask questions or reluctance to ask for help. The self-esteem issue of: “I thought that everyone was smarter than me”. The students can now see that although many students are feeling comfortable that there are also others who are having trouble and that they are not alone. I let them know that I recognize that students learn at different rates, and that they have a variety of learning styles and backgrounds but that through hard work and helping each other we can all succeed.

The next example is a “Muddiest Point” CAT given on week four of class after a lecture on constructors, methods, overloading, and overriding.

What was the muddiest (most confusing) point about today’s lecture?
1.
Not confusing.

2.
None.

3.
I’d like to talk more about getters & setters – not making them but situations
when to use them?

4.
This lecture was pretty clear.

5.
Overriding. Please can you show example of overriding!

6.
Overloading and stuff like that.

7.
Everything!?!

8.
The “super” keyword. Not that muddy – just a new concept for me.

9.
Overriding toString() method. I am kind of missing the “big” picture on how we put
all of this information together into a program.

10.
Nothing today

This feedback often helps me realize that even when I may have thought I did a great job of teaching a particular topic that I may have needed a slower transition into the subject, more opportunities for the students to “grasp” the concept, or a meta-cognitive follow-up. It is empowering for the students to pinpoint any confusion and it is helpful for me to understand the types of questions they have regarding a particular lecture topic.

The last example is a “Content Form and Function Outline” given at the end of week six after covering the topic of inheritance. The students were provided with the Content (What?) column already filled in. They were expected to read through an example lab exercise involving a Pet class and Dog class and through their analysis of the reading fill in the two empty columns (Form--How? And Function—Why?).

In class, we review their answers and I highlight/bold those responses we (as a group) think are the most accurately stated (those in red are wrong). I also add a response (0) to represent my own personal answer.

This feedback helps me determine whether the students not only recognized the necessary Java keywords for coding but whether they really understood the concept behind the syntax (and can state that in a meaningful way). Again, I am able to use this feedback to determine my success in meeting the course objectives/outcomes. Specifically whether the students have demonstrated success in meeting the following objective/outcome:

Assessment

Multiple tools and means are used to assess the level to which students have mastered course learning objectives/outcomes. This includes homework, lab exercises, and examinations. Also, end of the quarter surveys of what students themselves think they have mastered play an important role in course assessment.

Homework

I have chosen three different homework assignments to review. In each, I have selected an A student’s work, a high B student’s work and finally a low B student’s work. The homework represents approximately 30% of the students’ final grades.

Each assignment is evaluated based on a set of criteria listed on the standard grading sheet provided to the students (see Appendix#18). In addition, targeted outcomes for each assignment are listed on a web page available to the students (see Appendix#19 for a screen shot of the first page).

The grading sheet is made up of four components which I have elaborated in more detail below:
· Comments
A program should be well-documented. An overview of the application’s purpose and timeline of creation and modification should be included at the top-level of the application. Complex calculations and other processes should be commented as to how they work. Meaningful names should be given to variables, methods and classes.

· Style

A program should be easy to read and understand. Program readability is improved through the use of proper indentation, white space to logically separate sections of code and overall modular design.
Proper OO design and implementation should include the following characteristics: use of getters and setters in support of the concept of data hiding, appropriate access designations (e.g., private for data, public for methods), encapsulation--separating interface (user) from implementation (black box), use of constructors to create objects in an initial, stable state, abstraction and organization techniques through inheritance, and polymorphism (or the ability of a generalized request (message) to produce different results based on the object that it is sent to it). In addition, class design should strive for “loose coupling” and “tighter cohesion”. Loose coupling makes it possible to understand one class without reading others and change one class without affecting others thus improving maintainability. Tighter cohesion increases the extent that actions of a component are tied together in purpose.
· Input/Output

The program displays an introduction giving the purpose of the program and explaining any features not obvious to the average user. The information displayed looks neat and clear on the screen. This includes proper English, spelling and grammar. Input is prompted in an unambiguous fashion with units and formats clearly indicated. Output is easy to see and understand. It is properly labeled and formatted appropriately.

· Correctness

The program should conform to the specifications stated in the problem statement. The program runs correctly with the test data used. There is little redundancy in code, and logical structures chosen are the best suited for the task. The KISS principle - Keep It Simple Student is followed where appropriate.

The targeted outcomes are stated for each assignment. This is to insure the student recognizes that the goal of the assignment is not that “it works” but that some underlying principles are demonstrated in the solution. In addition, the student is shown that the assignments are progressing towards the course objectives.

When the graded assignments are returned to the students we go over their work anonymously under the euphemism “The Good, The Bad, and The Ugly”. In other words, we look at code that was right-on the mark, close to the mark and way off the mark (see earlier comments in the section “evidence of student learning”).

An average score for the assignment is calculated to help the students see how they did compared to others in the course. Time is allotted for students to individually ask me why I took off points in any criteria of the grading sheet.

The following rubric sets up the evaluation of student work.
	Related course objective/outcome
	Sample student work
	Motivation & significance

	Correctly apply the basic syntax of the Java language.

	Practice Assignment
	In CS1 first impressions can make a big impact on students' feelings of self-confidence. My motivation for providing a number zero or practice assignment is to give them a chance to attempt an assignment with only Pass/Fail criteria. Where a Fail has no penalty and a Pass provides a bonus of 10 points added to their grade at the end of the quarter.

This assignment requires the student to demonstrate a solid understanding of core programming elements (variables, decision-making, iteration, etc.)

	Understand “procedural” programming and modularization using methods.
	Assignment #1
	In CS1 students need a good foundation of core programming concepts established back in the days of procedural programming before they are ready to look at object oriented programming.

This assignment previews writing methods for modularization and code reuse in a non-object oriented fashion.

	Demonstrate knowledge of object-oriented design.
	Assignment #2
	This assignment requires students to demonstrate nearly all of the fundamental object-oriented programming skills learned over the course of four weeks.
The students' grades on this assignment tend to vary more than others. By analyzing the variation in the skills high, middle and low performers demonstrate I hope to reveal areas/topics that need to be addressed more thoroughly and/or taught differently, or ways the assignment might be improved or clarified.

For this assessment analysis, I used a practice assignment and looked at evidence that the students were able to incorporate the following components and meet the desired expectations for a Rental shop program:
Practice Assignment

	Assignment component
	Grade A
	Grade

B
	Grade

C

	Uses good programming style (helpful comments, meaningful variable names, good spacing/indentations, etc.)
	yes
	most of the time
	not often

	Correctly declares local variables in main (appropriate data types, initialization if necessary, etc.)
	yes
	initialization missing
	types inappropriate;
initialization missing

	Sets up constants (final) for fixed value fields
	yes
	sometimes
	not at all

	Correctly implements a “big” loop using a post test construct (do .. while)
	yes
	loop condition test erroneous/doesn’t distinguish upper/lowercase values entered
	no loop present

	User prompts for input and output is properly formatted and labeled
	yes
	adequate
	poorly done

	Correctly implements case structure (switch) or nested if for multi-choice data evaluation
	yes
	one or more test condition erroneous/ doesn’t distinguish upper/lowercase values entered
	stacked separate if statements

	No redundant or unnecessary/dead code
	yes
	little duplication of questions/steps
	lots of duplication of questions/steps
unnecessary/dead code

	Correctly instantiates object from java.text package for formatting
	yes
	incorrect number of decimal places, no comma
	not done

The majority of students received a Passing grade on this practice assignment (C or better was enough for a Pass). It is important that a majority of students receive a mock grade of A or B since this confirms that they have the required prerequisite skills and knowledge. Those students receiving a mock grade of C are counseled that they may have some “catching-up” to do. Any student that does not turn it in (the practice assignment is optional) I will talk to see if it was just an issue of having the time or desire versus whether they were not able to tackle the problem at all. A student who does not receive a “Pass” is advised to see me. I will review the students’ transcripts and talk to them about classes to take as prerequisites to build their knowledge base before continuing on in this class.

For the next assessment analysis, I looked at the first assignment that is graded and evidence that the students were able to incorporate these additional components and meet the desired expectations for an Interest Loan program:

Assignment #1
	Assignment component
	Grade A
	Grade

B
	Grade

C

	Demonstrates procedural abstraction by defining procedures (methods) to carry out computations required to solve task. Reduces redundant code and allows for code re-use.
	has static methods (returns value) for calculations.
	missing one or more
	none

	Demonstrates top-down design by breaking up a large problem into smaller sub-tasks. Modularizes code and represents appropriate hierarchy.
	has static methods (void) for sub-modules

	further step-wise refinement possible
	little (almost all code in “main”)

	Parameter passing appropriately used
	able to pass primitive and/or reference variables
	sometimes
	not at all

	Calculations correct and uses Math class for exponentiation
	yes
	small error in calculation (forget to convert APR to monthly, rate to decimal form)
	erroneous calculations

It is important that the students feel comfortable writing methods (in other words, passing parameters, invoking/calling methods, and recognizing when to return a value versus void) in order to successfully move onto creating a class. The difference between A and B students seems primarily to reflect their ability to “break” the problem down into sub-tasks, that is, the level of step-wise refinement or top-down design the student is able to demonstrate. However, those students doing fair (C) to poor reflect an inability to understand the mechanics of method definition regardless of whether they understood the overall structure and the relationships between the various parts of the problem, and then address the specific and complex issues of the implementations of the various sub-parts.

For the last assessment analysis, I used the second assignment and looked at evidence that the students were able to incorporate the following components and meet the desired expectations for an Employee information program:
Assignment #2
	Assignment component
	A
	B
	C

	Correctly implements class with constructor, get/set and other simple methods
	yes
	adequate: has only no-argument constructor, missing a getter/setter for data member, or a helper method
	inadequate: no suitable constructor, lack of substantial getter/setter methods or no helper methods

	Sets up class level (static) variables and used properly
	yes
	improperly used
	not present

	Overrides Object toString method and includes java.text formatting
	yes
	java.text formatting absent
	no toString method

	Declares, instantiates and assigns array of objects
	yes
	forgot to prompt user for size
	unable to create array of objects

	Proper indexing, retrieval of elements, use of length property for array of objects
	yes
	doesn't display message if no element is found
	indexing off, array bounds not checked

It was heartening that a majority of students were able to write and use a class, store objects in an array and set up a menu-driven console mode testing program. Missing elements for students with medium and low grades appears to indicate that either they ran out of time, didn't know how to correctly work with an array of objects, or possibly that they were confused about how to instantiate an object of their user-defined class. Lastly, as this assignment required two source files (Employee class and TestEmployee driver) and a fair amount of code, much of the inadequacies suggest students' lack of attention to detail or the need to emphasize the requirements in the assignment.
The Appendix#20 includes several graded student homework examples.
Student exit survey

The survey is the last page of the final exam and the students receive 10 bonus points for completing it. Here are the results of surveys for fall and winter quarters.

Fall 2005

Outcomes Assessment

Rate from 1-5 with 5 indicating “understood very well” to 1 indicating “totally lost” on the following course topics:

__4.0___
Classes (static, overloading, instance data/methods, private/public,

constructors,
getters/setters)

__3.4____
Inheritance (superclass/subclass, overriding, “is-a”, this, super)

__3.1____
Polymorphism (abstract class/method, dynamic binding)

__2.5____
File I/O (byte/character, sequential/random-access, I-O stream classes)

__3.0____
Exception handling (try/catch, throw, throws, Exception class, user-defined

exception class)

Winter 2006

Outcomes Assessment

Rate from 1-5 with 5 indicating “understood very well” to 1 indicating “totally lost” on the following course topics:

__4.1___
Classes (static, overloading, instance data/methods, private/public,

constructors,
getters/setters)

__4.1___
Inheritance (superclass/subclass, overriding, “is-a”, this, super)

__3.5___
Polymorphism (abstract class/method, dynamic binding)

__3.2____
File I/O (byte/character, sequential/random-access, I-O stream classes)

__3.6____
Exception handling (try/catch, throw, throws, Exception class, user-defined

exception class)

The good news is that the highest rating shows up on the fundamental purpose of the class and that is to teach them object oriented programming. The incremental decline in rates for the higher-end OO topics suggests a need to revisit those topics which occurs in CS 143 (the follow-up class). Lower rates on file handling and exception handling reflect most likely the limited time spent on those topics and the fact that they occur at the end of the quarter (that is, students are starting to fade).
STUDENT CONSENT FORM

Investigating Peer Assessment

Investigator: Richard A. Hoagland, Professor, Computer Information Systems,

South Puget Sound Community College, Olympia, (360) 754-7711 x5313, rhoagland@spscc.ctc.edu
Investigator's statement

I am asking that we can use the materials you produce in CS 142 for a research study. The purpose of this consent form is to give you the information you will need to help you decide whether or not to be in the study. Please read the form carefully. You may ask questions about the purpose of the research, what I would ask you to do, the possible risks and benefits, your rights as a volunteer, and anything else about the research or this form that is not clear. When all your questions have been answered, you can decide if you want to be in the study or not. This process is called ‘informed consent.’

PURPOSE AND BENEFITS

I want to better understand your experiences in CS 142, especially the effectiveness of the course resources and learning environment. I would like to look at the work you produce throughout the course and to use your work in reporting the results of this research to the community of computer science educators. I hope the results of this study will help us create better requirements, materials, and practices for courses in computing, both here at SPSCC and in other community colleges.

PROCEDURES

If you choose to be in this study, I would like to use your class work for research. The class work may include your programming assignments, in-class lab exercises, tests, and Course Assessment Tools (feedback forms). Whether you choose to have your class work used for research or not, it will not affect your course grade. I will not ask you to undertake any extra work as a result of consenting to participate in this research.

OTHER INFORMATION

I will keep your class work on a secure computer or in a locked filing cabinet. If the results of this study are published I will not use your name. I appreciate your support and willingness to help me. Thank you.

Subject’s statement

This study has been explained to me. I volunteer to take part in this research. I have had a chance to ask questions. If I have questions later on about the research I can ask the investigator listed above. If I have questions about my rights as a research subject, I can call the Vice-President of Instruction at (360) 754-7711 x5209. I have a copy of this consent form.

Signature of subject Printed name Date

Copies to:
Investigator’s file

Subject
Summary
What I learned from the portfolio process

I learned that it is a lot of work! That being said, it was a very worthwhile endeavor. I went from not knowing what a course portfolio was or how to create one to producing a comprehensive, critically thought-out report.

I have examined my teaching and students’ learning to a degree that I would never have contemplated without the Commons portfolio process. It was challenging, frustrating, and enlightening to delve into this mysterious thing called “teaching”.

It was good to see that many of my instincts about teaching were sound and that all my hard work in preparing the materials and assessment tools for this course was well placed. Participation in this portfolio project made me feel valued for my hard work and expertise.

I would like to acknowledge personally the support and camaraderie of these fellow Commons participants.

Janet -- thanks for making this process so much fun! Your humor, kindness, frankness, and many hugs made each session feel like a family get-together.

[image: image10.png]Be who you are and say what you feel, because those who mind don't matter
and those who matter don't mind. ~Dr. Seuss

Laurie – thanks for your wonderful insight on students, teaching and how it should all be a fun, caring and enjoyable experience.

“I like a teacher who gives you something to take home to think about besides
homework.” (Edith Ann)

Brad – thanks for sharing and allowing the rest of us to feel good about sharing the personal/private thoughts about being a teacher.

[image: image11.png]Never apologize for showing feeling. When you do so you apolagize for truth. Benjamin Disraeli

Josh – thanks for the ride!
[image: image12.png]He who dares to teach must never cease to learn.
—-Richard Henry Dann

Proposed/Planned changes

Here is a list of changes to the course that I would like to implement:

· Better inform the students to the “nature” of the course. The constraints (prerequisites, mix of audience, etc.) and how the course fits into the curriculum.

· Share with the students my own teaching beliefs, personal objectives for the course and how we can make the class a successful learning environment.

· Incorporate additional Curriculum Assessment Tools for improved student feedback.

· Organize more in-class discussions, group work, and student “learning by doing” activities like program debugging.
· Improve student retention by intervening earlier and more often.
· Require a written analysis of the concepts learned from the homework assignment.

· Rework the syllabus objectives to better match learning outcomes.
· Rework the homework grading sheet criteria to provide more detail (see earlier annotations on criteria).

Appendix
#1
Disciplinary Commons Sessions Web Page
[image: image13.jpg]Sessions Overview

Portfolia Topics Houliin
Date Deliverable (each links to session details) 8
T 7 ;
1 | What course have you chosen and why? Why CP's? Whatis a CP? What are your 5 r
Seourse:Objeciives Siiman -ourse SOEOmY:
Sepogy || SoumsiObisctives | course Objectives? Project Overview. Human Subjects. Shutbtarn ' Coer Sotom
2 — Wt malkes 2 CP useh? How does your couse "' i your degree progmam(s), |~y crP'® CFE Fom
Ocrzp = student demographics, constraints under which your course operates. [
Cerbin, 2001
z 1y
3 St Course anatomy. what do you teach? What are the parts? What are the orgeriring g"”‘ et L
Noviy = principles? Similarities/differences among us B
| Huber, Why Now?
4 o Course physiology: how do you teach? What methods? When used? For what édp"m" Sw
Declo EEROSE purposes? Getting the "how” to fit the "what” and "why" P Ll
Tnterchange: Teaching Practice
5 e — Wy do you teach what you teach Why do you teach how you teach? Whattast | gy by
Tan7 assumptions do your teaching choices embed? Pl
Bernstein, Student Learning
6 Evidence of Student What does student work tel you? What ace students learning and faiing to learn? |2 -y L
Feb 11 Learning Do you ask students to undertalee work that you value? utchings et al, Eocus on Student
Learning
7 e How do you grade? Making criteia explicit Why do you grade the way hat you |~ vty e seally value!
N do? Assessing what you value iy
8 Self and Peer [UW/CIDR on Peer Observation
Self and Peer 2 eer Observation
s e Debsisfing the Self and Peer Observations. What did you learn’ s voes Obaeeiaion
9 Complete Portfolio [
s e Teaching and Learning Conference presentation
- Rnox et al, "Peer review"
i Einal Portfolio Portfolio presentafions, Creating a Disciplinary Commons, Bridging institutional gaps | Shulman, "Teaching as community

property”

#2
Center for Instructional Development and Research (CIDR)

Classroom Observation Notes
[image: image14.jpg]Classroom Observation Notes
Pre-Observation Notes:

Instructor:

Observer:

Tize and Place:

for the chservation:

for the follow-up meting to discuss the observation:

Instructors goals for the class being cbserved:

The instructor asks the observer o pay special attention to:

Observation Notes:

tine dhservations irpressions | questions o ask.

Immediate Post-Observation Questions
General Questions:

o Was thi s typical class?
o What was your inqpression of hov it wendt?
© Whats you impression of how well you achisved your goals for the clase?

Spesifc Questions (based om observation notes):

#3
SPSCC Computer Programming guide
[image: image15.jpg]COMPUTER PROGRAMMING
ATA Degree/AAS-T

PROGRAM DESCRIPTION: Students leam to write computer programs in several programming languages, such as C++,
Visual Basic and Java. Students also learn to use database application software. Instruction is tailored to several platforms

An integral part of a computer programmer’s knowledge s the ability to understand the environment of computer
information systems that includes business concepts, mathematics, and oral and written communication. Students use
industry-standard software and equipment and apply knowledge leamed in classes, leaving the program with skills
necessary for entry-level jobs in computer programming.

Career opportunities typically begin as a computer programmer with possible future promotion to system analyst. Computer
Programming is a field with good opportunities for qualified persons in both government and private business. Students
choose from one of three tracks, The Web track provides skills and experience developing applications for use on the
Internet. The Applications track focuses on developing programs for a Window's environment. The Applied Science track is
designed to support students planning on transferring to U of W Tacoma while acquiring the skills necessary for immediate
empioyment. Al three tracks share a common core of courses designed to insure a strong foundation in programming and
problem-solving techniques

INTENDED STUDENT QUTCOMES FOR COMPUTER PROGRAMMING:

1. Computer Programming students will gain comprehensive skills in planning, creating, and debugging programs.

2, Computer Programming students will demonstrate ability to apply database and programming concepts in different
Situations.

3. Computer Programming ATA graduates wil be prepared to be employed in the information tschnology sector or in
information technology-related positions:

4. Camputer Pragramming students will learn current practices and technigues
PROGRAM INFORMATIO!

Admission:

Applications for admission and financial aid are available in Building 25, Office of Enraliment Servicss, or call (360) 754-7711,
ext. 4625, Students are accepted into the Camputer Pragramming program every guarter, Included in the pragram are bath
day and evening course offerings

Length of Program:
Full-time students typically complets this program in six quarters or two years, after basic skills are complste

Costs:

Tuition is subject ta change by the state Legislature. Detailed tuition infarmation is available in the quarterly class schedule.
Tuition and fees do not include the cost of textbooks and supplies.

Advisors:
Paul Smith, (350) $56-5274, and Rishard Hosaland (360) 506-5313 for the Agplied Science Track, Richard Hosgland (360)

596:5313 for the Web Track, Rand Rinness (350) 596-5382, and Fred Richard (360) S95-5206 fof the Application-Desktop
rach

Special Program Note:
Students entering the prograrm are expected to have successfully completed the following courses or their equivalents:

CIS 101 Keyboarding 1
CIS 108 Introduction to Office
€IS 123 Introduction to Windows

BASIC SKILLS REQUIREMENTS: English, Reading, or Math may be required based on placement testing. Student are
B R e o e o B Je P e et b CarmmIotad ariar o prograr Satry.

its [Grade/Comments
(Credits |Date Completed

[EnGL [no7 [asic writing 11 s
READ |097 |analytical Reading 11 | 5
[MaTH |090 [Basic Math 11 s

continued

continued
[image: image16.png][#3 Applied Science: U of W Tacoma Track AAS-T

[Introduction to Probabiliy and
MATHILO® |gtatistics i s
MATH[123 [calculus T 5
lpHvS [201[Engineering Physics T 5
[psvc (116 [Psychology of Human Relations | 5

100 Ievel courses are introductory or beginning level dasses
200 level courses are intermediate or advanced dasses

[image: image17.png]GENERAL EDUCATION LIST REQUIREMENTS:
A AT D RESENENTR: of the four cateqories: Reading/Writing; Listening/Spsaking; Computation;

and Human Relations. Unless specific courses are listed below, refer to the attached General Education List for the Associate
of Technical Artsjéssociate Degree Nursing/Certificate of Completion.

For an T4 degree, 3 single course may not be used to satisfy more than one category,

its [Grade/Comments/
Credits |pate Completed

[COMMUNICATION
[Reading/Writing.
[WRIT [101 [College Writing T 5
|Speaking/Listening
Business
C15 219 |Communication
or 5
[Technical and
rofessional
[Tcom [106 |communication
(Required for Applied
Science Track)

[COMPUTATION
C1s_ 168 [programming Logict | 5 [COMPLETED IN CORE
[HUMAN RELATIONS

l5mall Group

(Communication
SPCH [115 |(Required for the ©

|applied Science Track)

or

IHurman Dimensions in
S5 |19 |ihe office 9

15ge catalog for prerequisite.

[image: image18.png]ELECTIVES:
Select colirses with the assistance of an advisor to complete the 90 credit minimum requirement.

TRANSFERRED CREDITS/COMMENTS:

COOPERATIVE WORK EXPERIENCE /INTERNSHIPS:

R 1 & Gouth Puget Sound Community College an! offers students an
Gppartunity to receive college credit for paid o Unpaid work experience related to their educational goals, This program
alves students an opportunity o apply their skills while still in college.

For more information, contact the Cooperative Education/Internship_office at (350) 596-5211 (Bldg 25-130)

Check the Class Schedule for information on our current quarter class offerings.

Check the Assosiate of Technical Arts general education list for class listing.

(Effective 2005-2006 Academic Year)
Revised July 6, 2005

#4
SPSCC Associate of Science – Option 2

continued
[image: image19.png]MATH 205 5 credits

MATH 238 5 credits
WRIT 102 5 credits
Total 30 Credits Required

(**accreditation Board for Engineering
and Technology design component)

SUMMARY
Communication s

Quantitative Skills 15

Humarities s

social Science s

Humanities/Social Science s

Natural Science 20

Computer Information System s

Remaining Credits a0

Total 90 Credits Required

See requirements for all dearees/certificates/diplomas for more information on the Assosiate of Arts degres. For specific
courses that meet the distribution requirements listed abave, check the Assaciate of Arts/Assoriate of General Studies
‘general education list

Effective 2005-2006 Academic Year

#5
Student Perception Survey for CIS

continued

continued

#6
Article by Jay Vegso (Interest in CS as a Major)

[image: image20.jpg]Sl s,
B> e
§ s

AS5ociAnO™

About CRA
CRA far Studants
CRA far Faculty
Euents

Jabs

Government Affairs

Computing Research
Policy Blog

R Bulatin
CRA-Women
Projects
Publications

Dsts & Rezources
Mermbership
What's New

Hame

[Published originally in the May 2005 edition of Computing Research News, Val. 17/No. 3]

See also the March 2006 article, Drop in CS Bachelor's Degree Production.
and

Interest in CS and CE as Majors Drops in 2005

Interest in CS as a Major Drops Among Incoming Freshmen
by Jay Vegsa

An analysis of survey resdits from the Higher Education Research Institute at the University of California at Los Angeles
(HERI/UCLA) indicates that the popularity of computer science (CS) as a major among incoming freshmen at all
undergraduate institutions has dropped significantly in the past four years. alarmingly, the proportion of women who
thought that they might major in CS has fallen to levels unseen since the early 19705,

The percentage of incoming undergraduates indicating that they would major in CS declined by over 60 percent betweer
the Fall of 2000 and 2004, and is now 70 percent lower than its peak in the early 1980 (Figure 1),

Figure 1. Computer Science Listed as Probable Major Among Incoming Freshmen
Source: HERI at UCLA

#7
Computing Curricula 2001: Guidelines for Associate-Degree in Computer Science

[image: image21.png]PLG. Object-oriented programming [core]
Minimum core coverage time: 10 hours
Topics:

o Object-oriented design
« Encapsulation and information-hiding

« Separation of behavior and implementation

o Classes and subclasses

o Tnheritance (overriding, dynamic dispatch)

« Polymorphism (subtype polymorphism vs. inheritance)
o Class hierarchies

o Collestion classes and iteration protocols

« Tnternal representations of objects and method tables

Learning objectives:

Tustfy the philosophy of object-oriented design and the concepts of encapsulation, abstraction, inheritance, and polymorphism.
Design, implement, best, and debug simple programs in an object-oriented programming language

Describe how the class mechanism supports encapsulation and information hiding.

Design, implement, and test the implementation of Ys-a" relationships among objects using a class hierarchy and inheritance.
Compare and contrast the notions of overloading and overriding methods in an object-oriented language.

Explain the relationship between the stafc structure of the class and the dynamic siructure of the instances of the class.
Describe how iterators access the elements of a container.

Lo s e

#8
Handout
[image: image22.jpg]25162 Osjecr GrientedFragrammig |

Encapsulation

#n object is collection of deta (variables) and methods. Objects may hide Ther dafe from being
accessed drecty by ofher objects; fhis date hiding is called encapsulation. 45 c gencral polcy abjects
should keep their data hidden from ofher objects ond their methods accessible fo other cbiects.
Visibility modif ers are used 1o indicate wherher o varicble or method 5 availabl 10 ather objec 5.
Wher cata needs 1o be laoked ot or changed this should be done through methods called accessors (get
methods) and mutators (set methocs),

Aecessor Methads
Metnacs that retrieve or send information from ar 1o an nstance variable are of ren calle accessor
methods. Accessars fhat refrieve the value of an instance are nemed af ter the variable they are going
10 retrieue and prefixed with the word 'get”. The return type of the method should match the dets
“ype of the var able accessed

Motetor Methods
A method whose purpose i 1o change the value of ane or more mstance saricbles s ramed affer the
variable 115 going to change and prefixed wh the werd "ser"”. These methads are sometimes called
mutators. Most of fhe fime mutators fake the new value of the varcble they ore charging o5 o
parameter. The retum type of o mutator i always vard

Exarple

Ate int bakpalunce,

rezaods

setBalance (int aevzalan:
t neveala o

bankinance - newdslance

7 nanale sy

}

7% g1 i date s vailoble o all classes n ollpackages. privac data s avaiable only within the class
15 defined.

#9 Lab sheet

[image: image23.jpg]Class Lab 3

pat1
Complete the program RAHOAGLANDICS 1421Labs\Simple\Sum.java that calculates
the sum of two integer values, a floal typecast) and a double. and displays the result

ot

Complete the program RAHOAGLANDICS 142\LabsiSimpleiMilesToKms java that
converts a distance enfered by the user in miles to kilometers. Set up a constant value
for the conversion factar (1.609). Hint: use method from DecimalFormat class to format
the resul 1o fwo decimal places.

Constants in Java

Sven though Jova daes ot have 3 constant 498, you can schisv the same ofect by
iz varablas that are e, putl e, ans final. Al he varatles nave

Cannat b changed You ban hen aczess the constant vlue using the mame of e v
e rame of 5 class vath 3 perod

T ordes o e e

Format s, you need o 364 5 fllng st etz 1 e op o

.y rese 3 Desimalformss

Secumaitorsa form < s Depiraizorsar (4 A

Whenyou wan o ot it decml sth o sbovs fomating ppled, 1o dothe floreas

3

Complete the progiam RAHOAGLANDICS 1421Labs\SimplelDitty java that displays a
Top ten list” of Ways fi would be different if Microsoft buil cars. Hint. may need o use

‘escape characters for literal quotes

+ there are three exceptions

at reauire the use of the Escape character

single quate N aisplays as
Gouble quate - diSpiaya ae -
hackel BN aishias 22 N

¢ Use may use console mode or GUI interface for inputioutput activity to
complote these labs.

#10 Lab exercise code

[image: image24.jpg]Js5um fava
Timee

public clase Sue |

‘oublic static void mais
Jfvarisnle doclarations of prisitive

74 code nore
Eodo hera

code here
Goda bars

Tonrt Torgat to typecast It 32 Float by using the suffix £ ox F)

o

Stringl] areel
pec. initialization

declare two integer varisbles and assign then ho valuss 2
GocTare a f4ela To hold the sesult of intoger addition

deciare 3 double vorisble and assign it the value 4.5
Geciare 3 Fela to'fold the resilt of dowble (real addition

declare a fioet varishle and assign it the valus 1.2

Ifintsger arithmetic
[o Rere Lo a0d the two integer variables [243+5)7 £

/¢ cast - tyne convezsion - not required hore
74 586 here to am deshle and Flost variables +/

J/ prine to standaré out using string catenation to propare GULPUL string

I+ Zode here

iapiay "The First sum is *
“Ihe second sum i3 *

#11
Lab outcomes

[image: image25.jpg]55 Lab 3
=+ Learning Outcomes **
& Variables
- Declarations
primitive types (i, aouie, c1:2%)
initialization (lteral values)
- casting
literal values (suffix) oo wn

data type
Escape Sequences

backslash

newline

character data (enclosed in single quote
tini) takes s rin; data

system. ot
+ Constants
£nat keyword
coding convention - all caps
Output formatting
o class
£ocrar method
Displaying literal quotes (single or double)
use escape ',
literal backslash--2 for 1 1«

#12
Demo program

[image: image26.jpg]e condicionsn Cost ot aliates o/

Jniso aiass conios (
inlsc st vold msinigcring] et (

#13
CAT – Minute paper

[image: image27.jpg]Minute Paper
Please take a minute of two (o answer the following questions,

* Whatwas the most important idea you learned from taday's class?

= What s a question you stil have about the ideas we discussed in today's class?

Thinks

#14
CAT – Muddy point

[image: image28.jpg]Muddiest Point

Take this opportunity to provide feedback o your instructor

= What was the muddiest (most confusing) point about today's lecture?

Thanks

#15
CAT – Pace

[image: image29.jpg]Pace (ot the Piquante sauce &)

How do you feel overall about the pace of this class (just right, too fast, or 100 slow)?

* Rate the pace for just yourself

* Rate the pace with respect to all the students in the class

#16
CAT – Outline

#17
The Good, The Bad and The Ugly

Practice Assignment

[image: image30.png]J/esackanke’ tu. hald sask- ol Walidey: seavals’
Tioal dowsle RUG_CLEANER = 16.0, LAMN MOWER - 12.0, PAINT_SPRAYSR = 20.0 ,
DRROsIT - 30,01
Jfconsranca to held aquipzent nsaes for display in table and receipt
22021 stxing RUG = *RUg Cleanert , LAMN = Lawn Mowes
PAINT » “Paint Sprayer* ;

[image: image31.png]evieen (opl | o
T -
seete - 12 b aepons

[image: image32.png]weizeh (item) [
iF (duration =
frice - cieans

W] duration == w3 [

Stertlars = “Rus Cleansr ¢+ nf.forsat (price) + ¢ (alf-Day remtall®
| etsa §
srice = clean + 1.8
4 neofermaz (price) o (Pull-Day vental
' s
cane 2

it (@smszion oo b || Gwration - i |

* + at.fomas (price) + * GMalf-vay rencall® ;)

[image: image33.png]Systen .out println ["Receipt fron Tadie's Squiprent Restallat)
Syoton out printls fiterore) |

out prizein ("oaposic (0,000 1 -
“out priatin {rToral 4t commas (price +f xnn)

cem oue prin (vamote(van < 1|
fepeatite - oyinput readstriag ()

copest - ropestier . chsmiz (0);

} while (repsat == 'y’ || repeat == '¥'):

continued

Assignment #1

[image: image34.png]iblic static dowsle calcintereat tdowble loan, deuble rae, fnr Carmi(

catchar
ayze
Fito ger aonenl
n tern * cal
' Kol S

e by the tern
1oan, ate. torm) - loan!:

Gou

[image: image35.png]pubiie stacic void
[

- avas 1

#fkeep provpring for &
selaction - dicplayond il;

e s Geeleetion 1= 0011
s leuiator seiection) s
aprspmens 1))

11 ehe veer gusts

[image: image36.png]el e Irsetting saze
/ scesng) sascssring Jopeionrene shoTrpitbialog (mull, "Please ester your intrest zate betueen (1

(>)

Joop

157teake <o 1 48 ate >= 0) (acceptedtate = 1;)
o1so (hopetonpane .choumessageBialon (null, Eeror: Tnvalld

optionpane | ERRCR KRESACE 15) «
T\ Jubdte {acoepteamace. <2l % (0233

ot ols b b

[image: image37.png]iculator pethod: if user enters p, t. or i)

da |/ call dean
i s

mry o= 'ty || fembry oo tard
loantaloulator lentry) /fGall loan calsulats

pregean

"R progeant |- /7 wxil peoacan

Jopeicapans chommessagenlaley (mull, “Iavalid Bveyll Tey Agals

emtr - Staplagtens {15 /fataplay men

while fenery - ogli
ap Lonpae Aueiagetliatog (1L, 'Eed Progiant)

I e D 4
§ frezds pacn petbos i©

b il e e

continued

Assignment #2

[image: image38.png]ioreate Faployess t and azeign to Enployee
anpioyaeirray la] - new Ewployee (name, salary,

[image: image39.png]pupise static vois o

for

[image: image40.png]//azzigniag erployes info Lo output
or (1nt & = 0; 1« enployesyeray lsigth; Lee)
Gutput <= employeehrray 141 toString ()
Jfasstaning cocal member o
oucpus 1 “\xTotal sunber of Baplopos - -
+ englopechrray (employeeareay length - 1] getToralibe ()1

//diaplaya all the employees {info)

J0pticarane . chowiossagebiales ¢ Futre
w1, output, “Semsry of Saplojees as
Septionpane . INFORMATION_ NRSSAGR) e

} ttenda 121 cceest

|) #sends prins ethod

ey

i renda slass Jsger. 194

 #18
Grading sheet
[image: image41.png]Name. Assignment # ___

£ A—
Grading Sheet
Prostam Graging Crieda Possibl Points
Eamed
Comments

Heading with brief description, name, and date
Other meaningful cormments as needed to aid readabiliy

Descripive derifers 2
styie
Proper and consistent use of ndentation and blocking
Proper abjectorened design and Fplementation s
P
nputOutput .
Bescrbive prornpts ¢
Output formatied and labeled appropristely s g
5
Correctness ‘
Weste Speciicatins of problem and worls cartcly
Problemn s slved n an efcient manner 15 5
N
T0TAL25)

‘Addiional Comments

#19
Homework learning outcomes

#20
Graded Work

Practice Assignment
[image: image42.jpg]Assignment # freckce.

Heading with briaf des
Oher neaninglul comients as needed (o sid readabiily
Descriplive identiiers

style
‘roper and consistent use of indentation and blocking 2
Proper objectoiented design and inplennenaton 4
Input/Output 5
Desciptive prompts 5) 8
Output formatted and labeled appropriately 4 £ R
- A
Correctness L
Meets specifications of problem and works correcly =
Proolem s Sohvd Inan effcient manner 5 s B
= . N
/
/

V4

The score would translate to an eighty-eight (88) or high B. The check mark indicates that it counts as a Pass.

continued

[image: image43.jpg]mw‘ rewene + puiplies:
/it

| gw“"zmﬂ/
quiptBRTTS YTy T T

i = e v lue paze even thosan ¢ slseady
T Ttogead the 1hpet. 1o sithaz 1.2 01 3 should never be default
.+ SSAET) 9ut Sompiier would 7ot et ma 30 wiIhout for smstalization

[image: image44.jpg]yacen ot

printin (°7)

Spatin out prantia ("Depoast
Syacen cue peintin (~01¢
gt o Guiting pregesn

Ciiomne | eibone -covppescase)

orinin ("Receipt. from Padie's Equiptacnt Rencai”

e ——

continued

Assignment #1

[image: image45.jpg]5142 Onct e Proganing |

Name Assignment # l

= S—

Grading Sheet

Program Grading Criteria Possible Points.

Eamed
Comments

Heading vath brief descriptioh, name, and date

Other meaningful comments as needed to aid readabilty | |
Descriptive identfiers 2

style
Proper and consistent use of indentation and blocking 4
Proper object oriented design and implementation 4

InputiOutput
Descriptive prompts
Output formatted and labeled appropriately 4

HE

Correctness

e s of e s G sorec))
Problem is solved in an efficient mannsr — s 13

’\ 1
.

&

TOTAL (25) A

Additional Comments.

of

The score would translate to an eighty-eight (88) or high B.

continued

[image: image46.jpg]D T
[o eoicvioer

i suisg sopsscapase

ot~ e cinaizernet S 0011/

s statc s e serins 1 sra0 e o
e o o008 et

sisnou s prope €ox seanaction tpe
ranResit - Sopticibae snouiaetoiale (nell
Eacer 12] tor

* ke i) to quiciar

1 2
Ly ve

i Losae soessasehiaics (il Tvalia s, pleses
e arvor | Jopesantane

pushic statsc doie Lo:«j\ ovscer (st seicticn, dowie somntorssim

continued

Assignment #2
[image: image47.jpg]5 142 Ot Orented Programming |

Name WMbovsmeesZiMOIEmN,, Assignment# =

[#]

Grading Sheet

Program Grading Cr Possible Points

Eamed
Comments

Heading with brief description, name, and date
Other meaningful comments as needed to aid readability
Descrptive identifiers 2

Style
Proper and consistent use of indentation and blocking
Proper object-oriented design and implementation 4

InputiOutput 5
Descriptive prompts. £
Outpu formated and labeled appropriately i

Correctness. L
ests specifications of problem and works correctly
| Problem s solved in an efficient manner 15

TOTAL (25)

‘Additional Comments

The score would translate to 100 or A (perfect score).
continued

[image: image48.jpg]mport java.ueil .Gragoriancalendar ; //inports Gregorian Calendsr

mport Java.taxt Simplabmichormat 1 /inports Segie Sate Formae
mport Java it Seve, rimpocts buve ciavn
mrort Jars Cext beciralRomst | finporting for beciml Formattin

it St |

Jrmorss satsey

Ivorsn sa0 eype

o1 sanvar of Gopendanta

Innise, sepogee (St1ion 1a, doble s, String ST, ine dep. st . sne

Seesivmie 47
Setbepenaascs (sepl .

e

CIS 160

Introduction to Programming

CIS 168

Programming Logic

CIS 266 Developing Applications in Visual Basic.NET

CIS 166

Programming/Visual Basic

CS 143

Object-Oriented Programming II

CS 142

Object-Oriented Programming I

Course Portfolio

+

MATH 120

First-quarter pre-calculus

Page 4 of 72

_1210676262.bin

_1210676526.bin

_1210676853.bin

_1210677064.bin

_1210677208.bin

_1210676997.bin

_1210676726.bin

_1210676426.bin

_1210675927.bin

_1210676146.bin

_1210675706.bin

